1000 resultados para 76-534A


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kind, sedimentation rate, and diagenesis of organic particles delivered to the North Atlantic seafloor during the Middle Jurassic-Early Cretaceous were responsible for the presence of carbonaceous sediments in Hole 534A. Organic-rich black clays formed from the rapid supply of organic matter; this organic matter was composed of either abundant, well-preserved, and poorly sorted particles of land plants deposited in clays and silty clays within terrigenous turbiditic sequences (tracheal facies) or abundant amorphous debris (xenomorphic facies) generated through the digestive tracts of marine zooplankton and sedimented as fecal pellets. Evidence for the fecal-pellet origin of xenomorphic debris is illustrated. Black clays were also produced in sediments containing less organic matter as a result of the black color of carbonized particles composing all or most of the residues (micrinitic facies). Slowly sedimented hematitic Aptian clays contain very little carbonized, organic debris that survived diagenetic oxidation. In the red calcareous clay sequence of the Late Jurassic, larger amounts of this oxidized debris turned several clay layers black or blackish red. Carbonized debris also dominates the residues recovered in interbedded black and green Albian clays. Carbonization of organic matter in these sediments either turned them black or provided the diagenetic environment for reduced iron. Carbonized debris is also appreciable in burrow-mottled black-green Kimmeridgian clay. The study of Hole 534A organic matter indicates that during the middle Callovian there was a rapid supply of terrigenous organic matter, followed by a late Callovian episode of rapidly supplied xenomorphic debris deposited as fecal pellets. The Late Jurassic-Berriasian was a time of slower sedimentation of organic matter, primarily of a marine dinoflagellate flora in a poorly preserved xenomorphic facies variously affected by diagenetic oxidation. Several intervals of carbonized tracheal tissue in the Oxfordian and Kimmeridgian suggest episodes of oxidized terrigenous matter. The same sequence of Callovian organic events is evident in much of the Early Cretaceous

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At Site 534 in the Blake-Bahama Basin, western North Atlantic, an interval of 68 m of Maestrichtian (Upper Cretaceous) and upper middle to upper Eocene sediments consists of terrigenous siltstones, mudstones, and varicolored zeolitic claystones; minor recovery of micritic limestones, porcellanites, and quartzitic chert was made at this site as well. Comparisons with other Deep Sea Drilling Project (DSDP) sites in the western North Atlantic suggest that the following formations are present in this interval: Hatteras (Maestrichtian), Plantagenet (Maestrichtian and upper Eocene), Bermuda Rise (upper middle to upper Eocene), and the basal Blake Ridge Formation (upper middle to upper Eocene). Recognition of a Tertiary interval of the Plantagenet allows that formation to be divided into lower and upper informal units. Condensation makes this formal lithostratigraphic subdivision difficult. Together the formations record marked net condensed sedimentation (average rate ca. 2.5 m/m.y.) in strongly oxidizing bottom waters. From sedimentary structures and petrography, it is inferred that the terrigenous siltstones and micritic limestones were redeposited from the continental margin by turbidity currents. Chemical data plus petrography confirm relatively high plankton productivity during the upper Eocene. Much of the nonrecovered Eocene interval may represent chert and porcellanite. Fragments recovered were formed by replacement of relatively porous calciturbidites by opal-CT and quartz. Radiolarians in interbedded claystones rich in clinoptilolite show extensive dissolution. Relative to typical hemipelagic sediments, the claystones are enriched in many metals (Cu, Ni, Zn, Pb), particularly within manganese micronodules. The metal accumulation is related to a 30-m.y. period of slow net sediment accumulation, rather than to hydrothermal enrichment or to upward mobilization of metals from the underlying reduced Hatteras black shale facies. Elsewhere in the Blake-Bahama Basin, at Site 391, 22 km to the northwest, upper Eocene facies are missing, reportedly due to deep seafloor erosion of up to 800 m of the sedimentary succession. By contrast, the discovery that this interval is preserved at nearby Site 534 points to much less extensive seafloor erosion, possibly mostly in the Oligocene, which is missing at both DSDP Sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basalts from Hole 534A are among the oldest recovered from the ocean bottom, dating from the opening of the Atlantic 155 Ma. Upon exposure to a 1-Oe field for one week, these basalts acquire a viscous remanent magnetization (VRM), which ranges from 4 to 223% of their natural remanent magnetization (NRM). A magnetic field of similar magnitude is observed in the paleomagnetic lab of the Glomar Challenger, and it is therefore doubtful if accurate measurements of magnetic moment in such rocks can be made on board unless the paleomagnetic area is magnetically shielded. No correlation is observed between the Konigsberger ratio (beta), which is usually less than 3, and the ability to acquire a VRM. The VRM shows both a log t dependence and a Richter aftereffect. Both of these, but especially the log t dependence, will cause the susceptibility measurements (made by applying a magnetic field for a very short time) to be minimum values. The susceptibility and derived Q should therefore be used cautiously for magnetic anomaly interpretation, because they can cause the importance of the induced magnetization to be underestimated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The geochemical studies of Sites 534 and 391 and their comparison allow us to improve the chemical characterization of different geological formations dating from the early Callovian to the Maestrichtian along the continental margin of eastern North America. Three of the formations are favorable for the preservation of organic matter: (1) the unnamed formation (middle Callovian to Oxfordian), (2) the Blake-Bahama Formation (Berriasian to Barremian), and (3) the Hatteras Formation (Aptian to Cenomanian). The organic matter is mainly detrital, except for a few organic-rich layers where a contribution of aquatic material occurs. In these organic-rich layers, the petroleum potential is medium to good. Maturation has not quite reached the beginning of the oil window even for the deepest organic material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drilling at Site 534 in the Blake-Bahama Basin recovered 268 m of Lower Cretaceous, Berriasian to Hauterivian, pelagic carbonates, together with volumetrically minor intercalations of claystone, black shales, and terrigenous and calcareous elastics. Radiolarian nannofossil pelagic carbonates accumulated in water depths of about 3300 to 3650 m, below the ACD (aragonite compensation depth) but close to the CCD (calcite compensation depth). Radiolarian abundance points to a relatively fertile ocean. In the Hauterivian and Barremian, during times of warm, humid climate and rising sea level, turbiditic influxes of both terrigenous and calcareous sediments, and minor debris flows were derived from the adjacent Blake Plateau. The claystones and black shales accumulated on the continental rise, then were redeposited onto the abyssal plain by turbidity currents. Dark organic-rich and pale organic-poor couplets are attributed to climatic variations on land, which controlled the input of terrigenous organic matter. Highly persistent, fine, parallel lamination in the pelagic chalks is explained by repeated algal "blooms." During early diagenesis, organic-poor carbonates remained oxygenated and were cemented early, whereas organic-rich intervals, devoid of burrowing organisms, continued to compact later in diagenesis. Interstitial dissolved-oxygen levels fluctuated repeatedly, but bottom waters were never static nor anoxic. The central western Atlantic in the Lower Cretaceous was thus a relatively fertile and wellmixed ocean basin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pyrolysis assay, bitumen analysis, and elemental analysis of kerogen were used to characterize the organic matter of selected core samples from Hole 534A (Leg 76) and Hole 391C (Leg 44) on the Blake-Bahama Plateau. The organic matter throughout the stratigraphic section appears to be principally of a terrestrial origin. The data from several isolated horizons in the Hatteras and Blake-Bahama Formations imply the presence of significant quantities of autochthonous marine organic matter. However, these horizons appear so limited that they cannot be considered potential liquid hydrocarbon source rocks. All the analyzed samples are immature and have not evolved sufficiently to enter into the main stage of hydrocarbon generation. The temporal and spatial restrictions of strata rich in marine organic matter suggest that they do not represent major expansions and contractions of anoxic bottom-water masses, but represent limited occurrences of anoxic conditions.