1000 resultados para 76-533A


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A pressure core barrel (PCB), developed by the Deep Sea Drilling Project, was used successfully to recover, at in situ pressure, sediments of the Blake Outer Ridge, offshore the southeastern United States. The PCB is a unique, wire-line tool, 10.4 m long, capable of recovering 5.8 m of core (5.8 cm in diameter), maintained at or below in situ pressures of 34.4 million Pascals (MPa), and 1.8 m of unpressurized core (5.8 cm in diameter). All excess internal pressure above the operating pressure of 34.4 MPa is automatically vented off as the barrel is retrieved. The PCB was deployed five times at DSDP Site 533 where geophysical evidence suggests the presence of gas hydrates in the upper 600 m of sediment. Three cores were obtained holding average in situ pressures of 30 MPa. Two other cores did not maintain in situ pressures. Three of the five cores were intermittently degassed at varying intervals of time, and portions of the vented gas were collected for analysis. Pressure decline followed paths indicative of gas hydrates and/or dissolved gas. The released gas was dominantly methane (usually greater than 90%), along with higher molecular-weight hydrocarbon gases and carbon dioxide. During degassing the ratio of methane to ethane did not vary significantly. On the other hand, concentrations of higher molecular-weight hydrocarbon gases increased, as did carbon dioxide concentrations. The results from the PCB experiments provide tentative but equivocal evidence for the presence of .gas hydrates at Site 533. The amount of gas hydrate indicated is small. Nevertheless, this work represents the first successful study of marine gas hydrates utilizing the PCB.