13 resultados para 75436
Resumo:
In this work we present semi-analytical solutions for the electro-osmotic annular flow of viscoelastic fluids modeled by the Linear and Exponential PTT models. The viscoelastic fluid flows in the axial direction between two concentric cylinders under the combined influences of electrokinetic and pressure forcings. The analysis invokes the Debye-Hückel approximation and includes the limit case of pure electro-osmotic flow. The solution is valid for both no slip and slip velocity at the walls and the chosen slip boundary condition is the linear Navier slip velocity model. The combined effects of fluid rheology, electro-osmotic and pressure gradient forcings on the fluid velocity distribution are also discussed.
Resumo:
This work provides analytical and numerical solutions for the linear, quadratic and exponential Phan–Thien–Tanner (PTT) viscoelastic models, for axial and helical annular fully-developed flows under no slip and slip boundary conditions, the latter given by the linear and nonlinear Navier slip laws. The rheology of the three PTT model functions is discussed together with the influence of the slip velocity upon the flow velocity and stress fields. For the linear PTT model, full analytical solutions for the inverse problem (unknown velocity) are devised for the linear Navier slip law and two different slip exponents. For the linear PTT model with other values of the slip exponent and for the quadratic PTT model, the polynomial equation for the radial location (β) of the null shear stress must be solved numerically. For both models, the solution of the direct problem is given by an iterative procedure involving three nonlinear equations, one for β, other for the pressure gradient and another for the torque per unit length. For the exponential PTT model we devise a numerical procedure that can easily compute the numerical solution of the pure axial flow problem
Resumo:
UANL
Resumo:
Since the beginning of propolis research, several groups have studied its antibacterial, antifungal, and antiviral properties. However, most of these studies have only employed propolis ethanolic extract (PEE) leading to little knowledge about the biological activities of propolis water extract (PWE). Based on this, in a previous study, we demonstrated the anti-inflammatory and immunomodulatory activities of PWE. In order to better understand the equilibrium between effectiveness and toxicity, which is essential for a new medicine, the characteristics of PWE were analyzed. We developed and validated an RP-HPLC method to chemically characterize PWE and PEE and evaluated the in vitro antioxidant/antimicrobial activity for both extracts and the safety of PWE via determining genotoxic potential using in vitro and in vivo mammalian micronucleus assays. We have concluded that the proposed analytical methodology was reliable, and both extracts showed similar chemical composition. The extracts presented antioxidant and antimicrobial effects, while PWE demonstrated higher antioxidant activity and more efficacious for the most of the microorganisms tested than PEE. Finally, PWE was shown to be safe using micronucleus assays. © 2013 Bruno Alves Rocha et al.
Resumo:
Based on climatological data and energy flow, this paper analyzes the behavior observed in microclimatic an important remnant of cerrado in the São Paulo State. The seasonal climate is well marked, in the study area, with two climatic periods (one dry and one wet). The vegetation presents physiology as a function of water availability and the local thermal conditions and can be seen marked changes in the landscape due to the more or less presence of solar radiation. It’s important to understand the ecosystems behave in the context of global change. It has gained the attention of many researchers in the world.
Resumo:
No abstract.