4 resultados para 75346
Resumo:
In a previous work, GiuliattiWinter et al. found several stable regions for test particles in orbit around Pluto associated with families of periodic orbits obtained in the circular, restricted three-body problem. They have shown that a possible eccentricity of the Pluto-Charon binary slightly reduces but does not destroy any of these stable regions. In thiswork, we extended their results by analysing the cases with the orbital inclination (I) equal to zero and considering the argument of pericentre (w) equal to 90°, 180° and 270°. We explore the influence of the orbital inclination of the particles in these stable regions. In this case, the initial inclination varies from 10° to 170° in steps of 10°. We also present a sample of results for the longitude of the ascending node Ω = 90°, considering the cases I = 20°, 50°, 130° and 180°. Our results show that stable regions are present in all of the inclined cases, except when the initial inclination of the particles is equal to 110°. A sample of 3D trajectories of quasi-periodic orbits were found related to the periodic orbits obtained in the planar case by Giuliatti Winter et al. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.
Resumo:
The solution to the Green and Ampt infiltration equation is expressible in terms of the Lambert W-1 function. Approximations for Green and Ampt infiltration are thus derivable from approximations for the W-1 function and vice versa. An infinite family of asymptotic expansions to W-1 is presented. Although these expansions do not converge near the branch point of the W function (corresponds to Green-Ampt infiltration with immediate ponding), a method is presented for approximating W-1 that is exact at the branch point and asymptotically, with interpolation between these limits. Some existing and several new simple and compact yet robust approximations applicable to Green-Ampt infiltration and flux are presented, the most accurate of which has a maximum relative error of 5 x 10(-5)%. This error is orders of magnitude lower than any existing analytical approximations. (c) 2005 Elsevier Ltd. All rights reserved.