6 resultados para 75086
Resumo:
Among the clay minerals, montmorillonite is the most extensively studied material using as adsorbents, but palygorskite and its organically modified products have been least explored for their potential use in contaminated water remediation. In this study, an Australian palygorskite was modified with cationic surfactants octadecyl trimethylammonium bromide and dioctadecyl dimethylammonium bromide at different doses. A full structural characterization of prepared organo-palygorskite by X-ray diffraction, infrared spectroscopy, surface analysis and thermogravimetric analysis was performed. The morphological changes of palygorskite before and after modification were recorded using scanning electron microscopy, which showed the surfactant molecules can attach on the surface of rod-like crystals and thus can weaken the interactions between palygorskite single crystals. Real surfactants loadings on organo-palygorskites were also calculated based on thermogravimetric analysis. 1 CEC, 2 CEC octadecyl trimethylammonium bromide modified palygorskites, 1 CEC and 2 CEC dioctadecyl dimethylammonium bromide modified palygorskites absorbed as much as 12 mg/g, 42 mg/g, 9 mg/g and 25 mg/g of 2,4- dichlorophenoxyacetic acid respectively. This study has shown a potential on organo-palygorskites for organic herbicide adsorption especially anionic ones from waste water. In addition, equilibration time effects and the Langmuir and Freundlich models fitting were also investigated in details.
Resumo:
Background: The relationship between normal and tangential force components (grip force - GF and load force - LF, respectively) acting on the digits-object interface during object manipulation reveals neural mechanisms involved in movement control. Here, we examined whether the feedback type provided to the participants during exertion of LF would influence GF-LF coordination and task performance. Methods. Sixteen young (24.7 ±3.8 years-old) volunteers isometrically exerted continuously sinusoidal FZ (vertical component of LF) by pulling a fixed instrumented handle up and relaxing under two feedback conditions: targeting and tracking. In targeting condition, FZ exertion range was determined by horizontal lines representing the upper (10 N) and lower (1 N) targets, with frequency (0.77 or 1.53 Hz) dictated by a metronome. In tracking condition, a sinusoidal template set at similar frequencies and range was presented and should be superposed by the participants' exerted FZ. Task performance was assessed by absolute errors at peaks (AEPeak) and valleys (AEValley) and GF-LF coordination by GF-LF ratios, maximum cross-correlation coefficients (r max), and time lags. Results: The results revealed no effect of feedback and no feedback by frequency interaction on any variable. AE Peak and GF-LF ratio were higher and rmax lower at 1.53 Hz than at 0.77 Hz. Conclusion: These findings indicate that the type of feedback does not influence task performance and GF-LF coordination. Therefore, we recommend the use of tracking tasks when assessing GF-LF coordination during isometric LF exertion in externally fixed instrumented handles because they are easier to understand and provide additional indices (e.g., RMSE) of voluntary force control. © 2013 Pedão et al.; licensee BioMed Central Ltd.