1000 resultados para 75-530A


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cretaceous sediments from DSDP Site 530 have been analyzed for organic carbon isotopic composition. The d13C values in the sediments decrease from -22.7 per mil to -27.5 per mil in the following order: light-olive green mudstone/claystone, dark brown-red mudstone/siltstone/claystone, and black shale. This large range is primarily the result of variation in the relative amounts of terrestrial organic carbon superimposed on that derived from marine organisms. The black shales have an average d13C value of -25.9 per mil (range is from -23.7 per mil to -27.5 per mil). These values indicate that they originated primarily in terrigenous organic materials. The average d13C value present throughout the Cretaceous suggests that a large amount of terrestrial organic matter was supplied into this paleoenvironment, except during the Campanian, when an average d13C of -23.9 per mil is found near the marine end of the range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the key objectives of Deep Sea Drilling Project (DSDP) Leg 75 was to shed light on the underlying causes of Cretaceous oceanic anoxia in the South Atlantic by addressing two major hypotheses: productivity productivity-driven anoxia vs. enhanced ocean stratification leading to preservation of organic matter and black shale deposition. Here we present a detailed geochemical dataset from sediments deposited during the Cenomanian/Turonian (C/T) transition and the global oceanic anoxic event 2 (OAE 2) at DSDP Site 530A, located off-shore Namibia (southeast Angola Basin, north of Walvis Ridge). To characterise the succession of alternating black and green shales at this site and to reconstruct the evolution of their paleoenvironmental setting, we have combined data derived from investigations on bulk organic matter, biomarkers and the inorganic fraction. The location of the C/T boundary itself is biostratigraphically not well constrained due to the carbonate-poor (but organic matter-rich) facies of these sediments. The bulk d13Corg record and compound-specific d13C data, in combination with published as well as new biostratigraphic data, enabled us to locate more precisely the C/T boundary at DSDP Site 530A. The compound-specific d13C record is the first of this kind reported from C/T black shales in the South Atlantic. It is employed for paleoenvironmental reconstructions and chemostratigraphic correlation to other C/T sections in order to discuss the paleoceanographic aspects and implications of the observations at DSDP Site 530A in a broader context, e.g., with regard to the potential trigger mechanisms of OAE 2, global changes in black shale deposition and climate. On a stratigraphic level, an approximation and monitoring of the syndepositional degree of oxygen depletion within the sediments/bottom waters in comparison to the upper water column is achieved by comparing normalised concentrations of redox-sensitive trace elements with the abundance of highly source specific molecular compounds. These biomarkers are derived from photoautotrophic and simultaneously anoxygenic green sulphur bacteria (Chlorobiacea) and are interpreted as paleoindicators for events of photic zone euxinia. In contrast to a number of other OAE 2 sections that are characterised by continuous black shale sequences, DSDP Site 530A represents a highly dynamic setting where newly deposited black shales were repeatedly exposed to conditions of subtle bottom water re-oxidation, presumably leading to their progressive alteration into green shales. The frequent alternation between both facies and the related anoxic to slight oxygenated conditions can be best explained by variations in vertical extent of an oxygen minimum zone in response to changes in a highly productive western continental margin setting driven by upwelling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some samples from DSDP Holes 530A and 532 were analyzed for their fossil pollen content. The sites are located in the southeastern corner of the Angola Basin, about 200 km west of the present coastline. Fossil pollen assemblages of Holocene to Miocene age were compared with present-day pollen deposition in the arid Namib sand sea. The strong resemblance of all the pollen spectra indicates that very arid conditions existed in the coastal region of Namibia in Quaternary and Pliocene times. These data are in agreement with the late Miocene origin of the coastal aridity and with the conception that upwelling of cold water was responsible for these desert conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Five-hundred ten meters of Cretaceous sediments were drilled north of the Walvis escarpment in Hole 530A during Leg 75. An immature stage of evolution for organic matter can be assigned to all the samples studied. Black shales are interbedded with red and green claystone in the bottom sedimentary unit, Unit 8, which is of Coniacian to late Albian age. The richest organic carbon contents and petroleum potentials occur in the black shales. Detrital organic matter is present throughout the various members of a sequence, mixed with largely oxidized organic matter in the gray and green claystone or marlstone members on both sides. Detrital organic matter also characterizes the black streaks observed in the claystones. Vertical discontinuities in organic matter distribution are assigned to slumping. Several types of black shales can be identified, according to their content of detrital organic matter, the more detrital black levels corresponding to the Albian-Cenomanian period. Cyclic variations of organic matter observed for a sequence can occur for a set of sequences and even for some consecutive sets of sequences. Climatic factors are proposed to account for the cyclic sedimentation and distribution of organic matter for every sequence that includes a black bed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of C2-C8 hydrocarbons (including saturated, aromatic, and olefinic compounds) from deep-frozen core samples taken during DSDP Leg 75 (Holes 530A and 532) were analyzed by a combined hydrogen-stripping/thermovaporization method. Concentrations representing both hydrocarbons dissolved in the pore water and adsorbed on the mineral surfaces vary in Hole 530A from about 10 to 15,000 ng/g of dry sediment weight depending on the lithology (organic-carbon-lean calcareous oozes versus "black shales"). Likewise, the organic-carbon-normalized C2-C8 hydrocarbon concentrations vary from 3,500 to 93,100 ng/g Corg, reflecting drastic differences in the hydrogen contents and hence the hydrocarbon potential of the kerogens. The highest concentrations measured of nearly 10**5 ng/g Corg are about two orders of magnitude below those usually encountered in Type-II kerogen-bearing source beds in the main phase of petroleum generation. Therefore, it was concluded that Hole 530A sediments, even at 1100 m depth, are in an early stage of evolution. The corresponding data from Hole 532 indicated lower amounts (3,000-9,000 ng/g Corg), which is in accordance with the shallow burial depth and immaturity of these Pliocene/late Miocene sediments. Significant changes in the light hydrocarbon composition with depth were attributed either to changes in kerogen type or to maturity related effects. Redistribution pheonomena, possibly the result of diffusion, were recognized only sporadically in Hole 530A, where several organic-carbon lean samples were enriched by migrated gaseous hydrocarbons. The core samples from Hole 530A were found to be severely contaminated by large quantities of acetone, which is routinely used as a solvent during sampling procedures on board Glomar Challenger.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Albian/Cenomanian strata in Hole 530A are organically richer than are the post-Cenomanian strata. Organic matter is thermally immature and appears to be of dominantly marine origin with either variable levels of oxidation or variable amounts of terrestrial input. Geochemical data alone cannot establish whether the black shales present in Hole 530A represent deposition within a stagnant basin or within an expanded oxygen-minimum layer

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution of C1 to C8 hydrocarbons in sediment samples from DSDP Leg 75, Hole 530A, indicates that significant amounts of methane and ethane have migrated from organic-rich to organic-lean shales in close proximity. Most compounds larger than ethane are not migrating out of black shales, where they occur in high concentrations. These results lead to a general model for assessing migration. In addition, three shale types are identified on the basis of organic carbon and pyrolysis products and patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Black shales possessing high concentrations of organic carbon (Foresman, 1978, doi:10.2973/dsdp.proc.40.111.1978) were deposited in many parts of the proto South Atlantic Ocean during the Cretaceous period (Bolli et al., 1978, doi:10.2973/dsdp.proc.40.104.1978). The way such sediments accumulated is not fully understood, but is likely to have occurred through a combination of low oxygen availability and abundant supply of organic matter. Thin, centimetre-thick layers of black shales are commonly interbedded with thicker layers of organic carbon-deficient, green claystones, as found in strata of Aptian to Coniacian age, at Deep Sea Drilling Project (DSDP) Site 530, in the southern Angola Basin (Hay et al., 1982, doi:10.1130/0016-7606(1982)93<1038:SAAOOC>2.0.CO;2) and elsewhere. These differences in carbon content and colour reflect the conditions of deposition, and possibly variations in the supply of organic matter (Summerhayes and Masran, 1983, doi:10.2973/dsdp.proc.76.116.1983; Dean and Gardner, 1982). We have compared, using organic geochemical methods the compositions of organic matter in three pairs of closely-bedded black and green Cenomanian claystones obtained from Site 530. Kerogen analyses and distributions of biological markers show that the organic matter of the black shales is more marine and better preserved than that of the green claystones.