17 resultados para 74530
Resumo:
Resumen tomado de la publicación. Monográfico con el título: 'La educación ante la inclusión del alumnado con necesidades específicas de apoyo'
Resumo:
Background: Obesity in infancy and adolescence has acquired epidemic dimensions worldwide and is considered a risk factor for a number of disorders that can manifest at an early age, such as Metabolic Syndrome (MS). In this study, we evaluated overweight, obese, and extremely obese adolescents for the presence of MS, and studied the prevalence of single factors of the syndrome in this population. Methods. A total of 321 adolescents (174 females and 147 males) aged 10 to 16 years, attending the Adolescent Outpatient Clinic of Botucatu School of Medicine, Brazil, between April 2009 and April 2011 were enrolled in this study. Adolescents underwent anthropometric evaluation (weight, height, and abdominal circumference) and Body Mass Index (BMI) was estimated according to age and gender, following Disease Control and Prevention Centers recommendations (CDC, 2000). Blood pressure was measured and individuals with BMI ≥ 85§ssup§th§esup§ percentile were submitted to laboratory evaluation for Total Cholesterol, HDL and LDL Cholesterol, Triglycerides, Fasting Insulinemia, and Fasting Glycemia to identify MS factors, according to the criteria suggested by the International Diabetes Federation. Insulin resistance was calculated by HOMA-IR, Quicki, and Fasting Glycemia/Fasting Insulinemia (FGI). Results and discussion. Of the 321 adolescents, 95 (29.6%) were overweight, 129 (40.2%) were obese, and 97 (30.2%) were extremely obese. Around 18% were diagnosed with MS. The most prevalent risk factors were abdominal circumference ≥90§ssup§th§esup§ percentile (55%), HDL < 40 mg/dL (35.5%), High Pressure ≥130/85 mm/Hg (21%), Triglycerides ≥150 mg/dL (18.5%), and Fasting Glycemia ≥100 mg/dL (2%). Insulin resistance was observed in 65% of the adolescents. Conclusion: An increased prevalence of overweight and obesity, together with cardiometabolic risk factors such as dyslipidemia and abnormal blood pressure, were observed in adolescents, contributing to the onset of metabolic syndrome at younger ages. Risk factors for MS were more prevalent in females. © 2013 Rizzo et al.; licensee BioMed Central Ltd.
Resumo:
Hellas basin acts as a major sink for the southern highlands of Mars and is likely to have recorded several episodes of sedimentation and erosion. The north-western part of the basin displays a potentially unique Amazonian landscape domain in the deepest part of Hellas, called “banded terrain”, which is a deposit characterized by an alternation of narrow band shapes and inter-bands displaying a sinuous and relatively smooth surface texture suggesting a viscous flow origin. Here we use high-resolution (HiRISE and CTX) images to assess the geomorphological interaction of the banded terrain with the surrounding geomorphologic domains in the NW interior of Hellas to gain a better understanding of the geological evolution of the region as a whole. Our analysis reveals that the banded terrain is associated with six geomorphologic domains: a central plateau named Alpheus Colles, plain deposits (P1 and P2), reticulate (RT1 and RT2) and honeycomb terrains. Based on the analysis of the geomorphology of these domains and their cross-cutting relationships, we show that no widespread deposition post-dates the formation of the banded terrain, which implies that this domain is the youngest and latest deposit of the interior of Hellas. Therefore, the level of geologic activity in the NW Hellas during the Amazonian appears to have been relatively low and restricted to modification of the landscape through mechanical weathering, aeolian and periglacial processes. Thermophysical data and cross-cutting relationships support hypotheses of modification of the honeycomb terrain via vertical rise of diapirs such as ice diapirism, and the formation of the plain deposits through deposition and remobilization of an ice-rich mantle deposit. Finally, the observed gradual transition between honeycomb and banded terrain suggests that the banded terrain may have covered a larger area of the NW interior of Hellas in the past than previously thought. This has implications on the understanding of the evolution of the deepest part of Hellas.