999 resultados para 72-518


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative analysis was performed on the Quaternary planktonic foraminiferal fauna from Site 516, near the crest of the Rio Grande Rise, and Site 518, on the lower western flank of the Rise. From Hole 516, 46 samples were taken, and from Hole 518, 80 samples were taken. The mean interval between samples is 20 to 25 cm. About 50 species of Quaternary and Pliocene planktonic foraminifers were identified. Quaternary sediments, dated by the initial evolutionary appearance of Globorotalia truncatulinoides and other criteria, have thickness, of 9.8 m in Hole 516 and 16 m in Hole 518. The Globorotalia truncatulinoides Zone is subdivided into four subzones or biostratigraphic horizons (from lower to upper): (1) Globorotalia crassaformis viola, (2) Globorotalia crassaformis hessi, (3) Globigerina calida calida, and (4) Globigerinoides ruber (pink). Thickness of these horizons in Hole 516 establishes the age of the boundaries between them as 1.47, 0.81, and 0.28 Ma, respectively. All the Quaternary planktonic foraminiferal complexes sampled are subtropical. The region of the Rio Grande Rise, therefore, has been within the southern subtropical gyre continuously for the last 2 Ma. The average annual surface water temperatures were reconstructed for the Quaternary at both sites. A micropaleontologic method for the paleotemperature analysis of the thanatocoenosis registers an average Quaternary temperature of 21.2°C at Site 516 and 21.7°C at Site 518. The temperature fluctuations increase up to 3.5°C during the accumulation of the two last horizons (since 0.81 Ma). Temperature peaks are tentatively compared with oxygen isotopic stages and with continental glaciations. Levels at which planktonic foraminiferal species disappear correspond to coldwater intervals. In the Quaternary of Site 518, some layers show signs of dissolution. Corrosive to CaCO3, the northward flow of Antarctic Bottom Water through the Vema Channel increases during the cold periods. Site 518 has two layers of redeposited foraminiferal sand with Pliocene foraminifers. The average rate of the Quaternary sedimentation in Hole 516 is 0.52 cm per thousand years, and in Hole 518 it is 0.84 cm per thousand years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pliocene changes in the vertical water mass structure of the western South Atlantic are inferred from changes in benthic foraminiferal assemblages and stable isotopes from DSDP Holes 516A, 517, and 518. Factor analysis of 34 samples from Site 518 reveals three distinct benthic foraminiferal assemblages that have been associated with specific subsurface water masses in the modern ocean. These include a Nuttalides umbonifera assemblage (Factor 1) associated with Antarctic Bottom Water (AABW), a Globocassidulina subglobosa-Uvigerina peregrina assemblage (Factor 2) associated with Circumpolar Deep Water (CPDW), and an Oridorsalis umbonatus-Epistominella exigua assemblage associated with North Atlantic Deep Water (NADW). Bathymetric gradients in d13C between Holes 516A (1313 m), 517 (2963 m), and 518 (3944 m) are calculated whenever possible to monitor the degree of similarity and/or difference in the apparent oxygen utilization (AOU) of water masses located at these depths during the Pliocene. Changes in bathymetric d13C gradients coupled with benthic foraminiferal assemblages record fundamental changes in the vertical water mass structure of the Vema Channel during the Pliocene from 4.1 to 2.7 Ma. At Site 518, the interval from 4.1 to 3.6 Ma is dominated by the N. umbonifera (Factor 1) and O. umbonatus-E. exigua (Factor 3) assemblages. The d13C gradient between Holes 518 (3944 m) and 516A (1313 m) undergoes rapid oscillations during this interval though no permanent increase in the gradient is observed. However, d13C values at Site 518 are clearly lighter during this interval. These conditions may be related to increased bottom water activity associated with the re-establishment of the West Antarctic Ice Sheet in the late Gilbert Chron (-4.2 to 3.6 Ma) (Osborn et al., 1982). The interval from 3.6 to 3.2 Ma is marked by a dominance of the G. subglobosa-U. peregrina (Factor 2) assemblage and lack of a strong d13C gradient between Holes 518 (3944 m) and 516A (1313 m). We suggest that shallow circumpolar waters expanded to depths of a least 3944 m (Site 518) during this time. The most profound faunal and isotopic change occurs at 3.2 Ma, and is marked by dominance of the N. umbonifera (Factor 1) and O. umbonatus-E. exigua (Factor 3) assemblages, a 1.1 per mil enrichment in d18O, and a large negative increase in the d13C gradient between Holes 518 and 516A. These changes at Site 518 record the vertical displacement of circumpolar waters by AABW and NADW. This change in vertical water mass structure at 3.2 Ma was probably related to a global cooling event and/or final closure of the Central American seaway. A comparison of the present-day d13C structure of the Vema Channel with a reconstruction between 3.2 and 2.7 Ma indicates that circulation patterns during this late Pliocene interval were similar to those of the modern western South Atlantic.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: