999 resultados para 72-515B
Resumo:
Investigation of the ferromagnetic fraction of sediments from the Brazil Basin and Rio Grande Rise shows that its main constituents are magnetite and hematite. The magnetite is detrital, but the hematite is both detrital and chemical in origin. Magnetite is the main carrier of the natural remanent magnetization (NRM); therefore, the NRM is detrital remanent magnetization (DRM). In a number of cases, the change of magnetic parameters along the stratigraphic column permits some refinement of the previously defined boundaries of the lithologic units.
Resumo:
Compressional-wave velocity, wet-bulk density, and porosity were measured on sediments and rocks recovered from Deep Sea Drilling Project Holes 515B and 516F. Wet-bulk densities were measured by both gravimetric and GRAPE methods. Velocities were measured on trimmed samples with the Hamilton frame velocimeter. The shipboard measurement techniques are discussed in the explanatory notes chapter (Coulbourn, this volume) and are described in detail by Boyce (1976a). Only the shipboard measurements are reported here.
Resumo:
The petroleum-generating potential of five samples from Hole 515B, Vema Channel, and of 23 samples from Hole 516F, Rio Grande Rise, was analyzed. Organic carbon and pyrolysis data indicated that source rocks of good quality are not present. Microscopic examination showed predominance of woody organic matter, which is more favorable for the generation of gas in a mature stage; all samples, however, are still thermally immature.
Resumo:
Samples from the upper Oligocene and lower Miocene of Holes 515B (Brazil Basin) and 516F (Rio Grande Rise) were examined for fossil marine diatom content. The preservation of the diatoms was poor and the species diversity low in both holes. However, it was possible to zone portions of the intervals studied using the zonation proposed by Gombos and Ciesielski (1983), which is based, as far as possible, on common and robust species. Thus, the interval in Hole 515B represented by Cores 515B-15 and 515B-16 is assigned to the Coscinodiscus rhombicus Zone and the interval represented by Cores 515B-17 through 515B-44 is assigned to the Rocella gelida Zone. The C. rhombicus Zone is early Miocene in age and the R. gelida Zone is late Oligocene to early Miocene in age. In Hole 516F the interval represented by Cores 516F-6 through 516F-10 is assigned to the R. gelida Zone Gate Oligocene to early Miocene), and the interval represented by Cores 516F-11 through 516F-15 is assigned to the Triceratium groningensis Zone (late Oligocene). Two new fossil diatom taxa are defined herein: Coscinodiscus lewisianus Greville f. concavus n. f. and Rocella semigelida n. sp.
Resumo:
The Neogene of the southwestern Atlantic is virtually barren of biogenic silica. Of the four sites drilled on Leg 72, only two contained identifiable radiolarian specimens. In the southwestern Brazil Basin (Site 515), radiolarians are present only from the upper Oligocene (Anomaly 8, about 28 Ma) to the middle Miocene (Zone NN8, about 11.5 Ma). On the Rio Grande Rise (Site 516), radiolarians are present only within a short interval of the lower Miocene (Zones N5-N6, about 18-20 Ma). The abrupt cessation of silica deposition in the upper middle Miocene is characteristic of many drill sites in the tropical and temperate Atlantic and implies that a major oceanographic "threshold" was exceeded at this time, allowing the Atlantic waters to become either less productive or relatively silica deficient. Siliceous microfossils are notably more abundant in Oligocene-Miocene sediments of deep regions where carbonate preservation is poor (Site 515) than in equivalent carbonate-rich strata nearby (Site 516). This discrepancy suggests that the presence of calcareous microfossils may act to enhance post-depositional dissolution of biogenic silica tests by elevating the pH of the surrounding pore waters. Carbonate-free clays, by contrast, may provide a more favorable chemical environment for silica preservation.
Resumo:
The amount, type, and thermal maturation of organic matter in sediments from two DSDP holes in the South Atlantic (Leg 72) were investigated. Isolated kerogens were studied by microscopy, and nonaromatic hydrocarbons were characterized by capillary gas chromatography. Organic carbon values are low in all samples and range between 0.05 and 0.21% in Hole 515B (Brazil Basin) and only between 0.02 and 0.10% in Hole 516F (Rio Grande Rise). The organic matter is predominantly terrigenous, mixed with some unicellular marine algae; it is severely oxidized in most samples. N-alkane distributions are usually dominated by long-chain wax alkanes with odd-over-even carbon number predominance; when the marine organic matter is relatively more abundant, however, significant amounts of n-alkanes are centered upon n-C17. The organic matter is not mature enough in any sample to generate appreciable amounts of hydrocarbons.