1000 resultados para 671299 Computer hardware and electronic equipment not elsewhere classified
Resumo:
This paper explores potential for the RAMpage memory hierarchy to use a microkernel with a small memory footprint, in a specialized cache-speed static RAM (tightly-coupled memory, TCM). Dreamy memory is DRAM kept in low-power mode, unless referenced. Simulations show that a small microkernel suits RAMpage well, in that it achieves significantly better speed and energy gains than a standard hierarchy from adding TCM. RAMpage, in its best 128KB L2 case, gained 11% speed using TCM, and reduced energy 14%. Equivalent conventional hierarchy gains were under 1%. While 1MB L2 was significantly faster against lower-energy cases for the smaller L2, the larger SRAM's energy does not justify the speed gain. Using a 128KB L2 cache in a conventional architecture resulted in a best-case overall run time of 2.58s, compared with the best dreamy mode run time (RAMpage without context switches on misses) of 3.34s, a speed penalty of 29%. Energy in the fastest 128KB L2 case was 2.18J vs. 1.50J, a reduction of 31%. The same RAMpage configuration without dreamy mode took 2.83s as simulated, and used 2.39J, an acceptable trade-off (penalty under 10%) for being able to switch easily to a lower-energy mode.
Resumo:
A multiagent diagnostic system implemented in a Protege-JADE-JESS environment interfaced with a dynamic simulator and database services is described in this paper. The proposed system architecture enables the use of a combination of diagnostic methods from heterogeneous knowledge sources. The process ontology and the process agents are designed based on the structure of the process system, while the diagnostic agents implement the applied diagnostic methods. A specific completeness coordinator agent is implemented to coordinate the diagnostic agents based on different methods. The system is demonstrated on a case study for diagnosis of faults in a granulation process based on HAZOP and FMEA analysis.
Resumo:
The UQ RoboRoos have been developed to participate in the RoboCup robot soccer small size league over several years. RoboCup 2001 saw a focus on the mechanical design of the RoboRoos, with the introduction of an omni-directional drive system and a high power kicker. The change in mechanical design had implications for the rest of the system particularly navigation and multi-robot planning. In addition, the overhead vision system was upgraded to improve reliability and robustness.
Resumo:
This paper discusses a new paradigm of real-time simulation of power systems in which equipment can be interfaced with a real-time digital simulator. In this scheme, one part of a power system can be simulated by using a real-time simulator; while the other part is implemeneted as a physical system. The only interface of the physical system with the computer-based simulator is through data-acquisition system. The physical system is driven by a voltage-source converter (VSC)that mimics the power system simulated in the real-time simulator. In this papar, the VSC operates in a voltage-control mode to track the point of common coupling voltage signal supplied by the digital simulator. This type of splitting a network in two parts and running a real-time simulation with a physical system in parallel is called a power network in loop here. this opens up the possibility of study of interconnection o f one or several distributed generators to a complex power network. The proposed implementation is verified through simulation studies using PSCAD/EMTDC and through hardware implementation on a TMS320G2812 DSP.
Resumo:
Inspection of solder joints has been a critical process in the electronic manufacturing industry to reduce manufacturing cost, improve yield, and ensure product quality and reliability. This paper proposes two inspection modules for an automatic solder joint classification system. The “front-end” inspection system includes illumination normalisation, localisation and segmentation. The “back-end” inspection involves the classification of solder joints using the Log Gabor filter and classifier fusion. Five different levels of solder quality with respect to the amount of solder paste have been defined. The Log Gabor filter has been demonstrated to achieve high recognition rates and is resistant to misalignment. This proposed system does not need any special illumination system, and the images are acquired by an ordinary digital camera. This system could contribute to the development of automated non-contact, non-destructive and low cost solder joint quality inspection systems.
Resumo:
A tunable decoupling and matching network (DMN) for a closely spaced two-element antenna array is presented. The DMN achieves perfect matching for the eigenmodes of the array and thus simultaneously isolates and matches the system ports while keeping the circuit small. Arrays of closely spaced wire and microstrip monopole pairs are used to demonstrate the proposed DMN. It is found that monopoles with different lengths can be used for the design frequency by using this DMN, which increases the design flexibility. This property also enables frequency tuning using the DMN only without having to change the length of the antennas. The proposed DMN uses only one varactor to achieve a tuning range of 18.8% with both return loss and isolation better than 10-dB when the spacing between the antenna is 0.05λ. When the spacing increases to 0.1λ, the simulated tuning range is more than 60%.
Resumo:
A practical method for the design of dual-band decoupling and matching networks (DMN) for two closely spaced antennas using discrete components is presented. The DMN reduces the port-to-port coupling and enhances the diversity of the antennas. By applying the DMN, the radiation efficiency can also be improved when one port is fed and the other port is match terminated. The proposed DMN works at two frequencies simultaneously without the need for any switch. As a proof of concept, a dual-band DMN for a pair of monopoles spaced 0.05λ apart is designed. The measured return loss and port isolation exceed 10 dB from 1.71 GHz to 1.76 GHz and from 2.27 GHz to 2.32 GHz.
Resumo:
Smart antenna receiver and transmitter systems consist of multi-port arrays with an individual receiver channel (including ADC) and an individual transmitter channel (including DAC)at every of the M antenna ports, respectively. By means of digital beamforming, an unlimited number of simultaneous complex-valued vector radiation patterns with M-1 degrees of freedom can be formed. Applications of smart antennas in communication systems include space-division multiple access. If both stations of a communication link are equipped with smart antennas (multiple-input-multiple-output, MIMO). multiple independent channels can be formed in a "multi-path-rich" environment. In this article, it will be shown that under certain circumstances, the correlation between signals from adjacent ports of a dense array (M + ΔM elements) can be kept as low as the correlation between signals from adjacent ports of a conventional array (M elements and half-wavelength pacing). This attractive feature is attained by means of a novel approach which employs a RF decoupling network at the array ports in order to form new ports which are decoupled and associated with mutually orthogonal (de-correlated) radiation patterns.
Resumo:
We consider a joint relay selection and subcarrier allocation problem that minimizes the total system power for a multi-user, multi-relay and single source cooperative OFDM based two hop system. The system is constrained to all users having a specific subcarrier requirement (user fairness). However no specific fairness constraints for relays are considered. To ensure the optimum power allocation, the subcarriers in two hops are paired with each other. We obtain an optimal subcarrier allocation for the single user case using a similar method to what is described in [1] and modify the algorithm for multiuser scenario. Although the optimality is not achieved in multiuser case the probability of all users being served fairly is improved significantly with a relatively low cost trade off.
Resumo:
Abstract—In this paper we investigate the capacity of a general class of the slotted amplify and forward (SAF) relaying protocol where multiple, though a finite number of relays may transmit in a given cooperative slot and the relay terminals being half-duplex have a finite slot memory capacity. We derive an expression for the capacity per channel use of this generalized SAF channel assuming all source to relay, relay to destination and source to destination channel gains are independent and modeled as complex Gaussian. We show through the analysis of eigenvalue distributions that the increase in limiting capacity per channel use is marginal with the increase of relay terminals.