987 resultados para 640201 Iron ores (i.e. ferrous ores)
Resumo:
Modern electron optical techniques together with X-ray and mineralogical examination have been used to study the occurrence and form of phosphorus bearing minerals in iron ores. Three ores have been studied - Bahariya and Aswan from Egypt and Frodingham ironstone from U.K. The iron in the Bahariya iron ore is mainly as hematite and goethite. The gangue minerals are halite, gypsum, barytes, quartz and calcite. Iron content is between 49.8 to 63.2% and phosphorus 0.14 to 0.34%. The phosphorus occurs as very fine particles of apatite which are distributed throughout the ore. Removal of the phosphorus would require very fine grinding followed by acid leaching. Aswan iron ore is an oolitic iron ore; the iron content between 41-57% and phosphorus content 0.1 to 2.9%. It is mainly hematitic with variable quantities of quartz, apatite and small amount of clay minerals. In the oolitic iron ore beds, apatite occurs in the hematite matrix; filling in the pores of the oolithic surfaces, or as matrix cementing the ooliths with the hematite grains. In sandstone claybeds the distribution of the apatite is mainly in the matrix. It is suggested that the liberation size for the apatite would be -80 m and flotation concentration could be applied for the removal of apatite from Aswan ore. Frodingham ironstone occurs in the lower Jurassic bed of the South Humberside area. The average iron content is 25% and the phosphorus is 0.32%. Seven mineral phases were identified by X-ray; calcite, quartz, chamosite, hematite, siderite, apatite, and chlorite. Apatite occurs as very fine grains in the hematite and chamosite ooliths; as matrix of fine grains intergrown with chamosite and calcite grains; and as anhedral and sub rounded grains in the ooliths (8-28 m). It is suggested that two processes are possible for the dephosphorisation; the Flox process or a reduction roast followed by fine grinding, magnetic separation, and acid leaching.
Resumo:
Several major iron deposits occur in the Quadrilatero Ferrifero (QF), southeastern region of Brazil, where metamorphosed and heterogeneously deformed banded iron formation (BIF) of the Caue Formation, regionally called itabirite, was transformed into high- (Fe >64%) and lowgrade (30%
Resumo:
The iron ores of Alegria mine are composed of itabirites enclosing minor bodies of high-grade ores. The itabirites are classified according to mineralogical composition in five types: martite-rich, goethite-rich, specularite-rich, magnetite-rich and anphibolite-rich ores. The hematites are martite-rich, magnetite-rich, specularite-rich and more rarely, amphibolite-rich. Other classification criteria of the ores are based on the physical properties and the degree of compaction. As such, the itabirites and hematites can be classified as hard, friable and soft types. The mineralogical/textural evolution of the ores is linked to the pressure and temperature conditions that accompanied the tectonic processes in anphibolite facies and the different degrees of subsequent surficial weathering processes. Petrographic and microstructural studies indicate that the magnetite and amphibole bearing itabirites represent the parent rocks that created the other itabirites and that the specularite itabirites and the hard martite types are related to silica dissolution and redeposition in zones of high and low strain. Most of itabirites ores correspond to chert oxide facies banded iron formation, except the goethite and amphibole bearing itabirite that resemble a silicate or oxide-silicate facies with minor carbonate impurities. The great mass and pods of soft martite itabirites are probably shaley oxide facies BIFs with little volcanic contribution. Trace element contents of the Alegria's itabirites show strong dissimilarities with BIFs associated with volcanism (Algoma type), but closely ressemble to the Lake Superior type, with high content in Cr, Co and low V, Ni, Cu and Zn. Although the absolute contents of REE present in the Alegria's itabirites are, in general very low, the pattern when normalised by NASC is similar to the great majority of the Archean and Paleoproterozoic BIFs elsewhere in the world, and characterised by positive Eu anomaly.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references and index.
Resumo:
The possibility of using thiocyanate to determine iron(II) and/or iron(III) in water-acetone mixture has been re-examined as part of a systematic and comparative study involving metallic complexes of pseudohalide ligands. Some parameters that affect the complete oxidation of the ferrous cations, their subsequent complexation and the system stability have been studied to optimize the experimental conditions. Our results show the viability and potentiality of this simply methodology as an alternative analytical procedure to determine iron cations with high sensitivity, precision and accuracy. Studies on the calibration, stability, precision, and effect of various different ions have been carried out by using absorbance values measured at 480 nm. The analytical curve for the total iron determination obeys Beer's law (r = 0.9993), showing a higher sensitivity (molar absorptivity of 2.10x10(4) L cm-1 mol-1) when compared with other traditional systems (ligands) or even with the "similar" azide ion [1.53x10(4) L cm-1 mol-1, for iron-III/azide complexes, in 70% (v/v) tetrahydrofuran/water, at 396 nm]. Under such optimized experimental conditions, it is possible to determine iron in the concentration range from 0.5 to 2 ppm (15-65% T for older equipments, quartz cells of 1.00 cm). Analytical applications have been tested for some different materials (iron ores), also including pharmaceutical products for anemia, and results were compared with atomic absorption determinations. Very good agreement was obtained with these two different techniques, showing the potential of the present experimental conditions for the total iron spectrophotometric determinations (errors < 5%). The possibility of iron speciation was made evident by using another specific and auxiliary method for iron(II) or (III).
Resumo:
The Hamersley province of northwest Australia is one of the world's premier iron ore regions with high-grade martite-microplaty hematite iron ore deposits mostly hosted within banded iron formation (BIF) sequences of the Brockman Iron Formations of the Hamersley Group. These high-grade iron ores contain between 60 and 68 wt percent Fe, and formed by the multistage interaction of hydrothermal fluids with the host BIF formation. The oxygen isotope compositions of magnetite and hematite from BIF, hydrothermal alteration assemblages, and high-grade iron Ore were analyzed from the Mount Tom Price, Paraburdoo, and Charmar iron ore deposits. The delta(18)O values of magnetite and hematite from hydrothermal alteration assemblages and high-grade iron ore range from -9.0 to -2.9 per mil, a depletion of 5 to 15 per mil relative to the host BIF. The delta(18)O values are spatially controlled by faults within the deposits, a response to higher fluid flux and larger influence the isotopic compositions by the hydrothermal fluids. The oxygen isotope composition of hydrothermal fluids (delta(18)O(fluid)) indicates that the decrease in the (18)O content of iron oxides was due to the interaction of both basinal brines and meteoric fluids with the original BIF. Late-stage talc-bearing ore at the Mount Tom Price deposit formed in the presence of a pulse of delta(18)O-enriched basinal brine, indicating that hydrothermal fluids may have repeatedly interacted with the BIFs during the Paleoproterozoic.
Resumo:
Iron ore treatment processes are usually continuous and high tonnage and filtration equipment has to meet these requirements. In magnetite (Fe3O4) treatment process continuous rotary disc filters are often used for filtration. Carbon dioxide (CO2) treatment is a fairly novel and un-known filtration enhancing process. The interest to use CO2 is quite high because CO2 is a greenhouse gas that is abundant, readily available and capture and use of CO2 would be environmentally beneficial. The focus of this thesis was to investigate if CO2 could be used to enhance the filtration of magnetite with ceramic disc filter. Previous studies have suggested that CO2 could be used to enhance the filtration properties of different iron ores thus increasing the filtration capacity. In the literature part, the basic theory of filtration and the particle properties affecting filtration were discussed. The basic steps of a typical ore treatment process were presented. The reasons why CO2 might enhance the filtration properties of different ores were investigated. A literature survey of earlier studies of CO2 addition as a filter aid was presented and the basic chemical properties and reactions of CO2 were also discussed. The experimental part was done at the LUT Laboratory of Separation Technology using different magnetite samples from the industry. The filtration experiments indicated that CO2 had a positive influence on the filtration properties of magnetite slurry. Zeta potential of untreated and CO2 treated magnetite was measured and CO2 treated magnetite had lower zeta potential values than the untreated magnetite. The filtration capacity was increased while the cake moisture levels were only slightly increased.
Resumo:
Spindle-type iron fine particles have been prepared by reduction of silica-coated-hematite particles. Hydrogen reduction of the coated-hematite cores yielded uniform spindle-type iron particles, which were stabilized by surface oxidation. Narrow particle distributions are observed from TEM measurements. X-ray, Mössbauer and magnetization data are in agreement with the presence of nanosized α-Fe particles, having surface layer of spinel structure oxide. Mössbauer spectra show that the oxide surface is superparamagnetic at room temperature. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Includes index.
Resumo:
Mode of access: Internet.
Resumo:
"Résumé of literature": p. 55-128.
Resumo:
Phosphorus, as phosphate, is frequently found as a constituent of many of the world iron resources. Phosphorus is an extremely harmful element found in iron ore used as a raw material in the steelmaking process because it will affect the quality of iron and steel products. Allowable phosphorus concentration in high quality steel is usually less than 0.08%. Dephosphorization of iron ore has been studied for a long time. Although there are described physical beneficiation and chemical leaching processes, involving inorganic acids, to reduce phosphorus content of iron ores, these processes have several limitations such as poor recovery, require high energy quantity, capital costs and cause environmental pollution. Use of microorganisms in leaching of mineral ores is gaining importance due to the implementation of stricter environmental rules. Microbes convert metal compounds into their water soluble forms and are biocatalysts of leaching processes. Biotechnology is considered as an eco-friendly, promising, and revolutionary solution to these problems. Microorganisms play a critical role in natural phosphorus cycle and the process of phosphate solubilization by microorganisms has been known for many years. This study was performed to analyze the possibility of using bioleaching as a process for the dephosphorization of an iron ore from Northeast of Portugal. For bioleaching, Acidithiobacillus ferrooxidans bacterium were used. For this study two experiments were done with different conditions, which lasts 6 weeks for first experiment and 5 weeks for second experiment. From the result of these preliminary studies, it was observed that for first experiment 6.2 % and for second experiment 3.7 % of phosphorus was removed from iron ore.