984 resultados para 630301 Fisheries-commercial
Resumo:
This report considers the development of environmental quality standards (EQSs) for the salmonid fishery, cyprinid fishery, migratory fishery, commercial harvesting of marine fish for public consumption and commercial harvesting of shellfish for public consumption uses of controlled surface waters. Previous reports have been used to identify those parameters necessary for the maintenance of these five uses. Each water use is considered in a separate section within which identified parameters are discussed and standards proposed, a summary of the proposed standards is presented at the beginning of the relevant section. For salmonid, cyprinid and migratory fisheries, EQSs for substances in water have been proposed for the protection of these fisheries. For the commercial harvesting of marine fish and shellfish for public consumption uses 'Warning Levels' of substances in waters have been proposed. These 'Warning Levels' have been proposed by considering data on bioaccumulation and food standards and aim to prevent acceptable intake values and concentrations in fish/shellfish flesh exceeding statutory or recommended levels. For the commercial harvesting of marine fish for public consumption it has been concluded that the current EQSs for most List II substances for the protection of salt water life should be adequately stringent to protect this use, however for the commercial harvesting of shellfish for public consumption, these List II EQSs do not appear adequate to protect this use and more stringent 'Warning Levels' have been proposed. For all five uses considered in this report there has been found to be limited information on a number of the parameters considered and in general for indigenous species, this has been found to be especially so when considering migratory fisheries and the commercial harvesting of marine fish and shellfish.
Resumo:
Large and powerful ocean predators such as swordfishes, some tunas, and several shark species are unique among fishes in that they are capable of maintaining elevated body temperatures (endothermy) when hunting for prey in deep and cold water [1-3]. In these animals, warming the central nervous system and the eyes is the one common feature of this energetically costly adaptation [4]. In the swordfish (Xiphias gladius), a highly specialized heating system located in an extraocular muscle specifically warms the eyes and brain up to 10degreesC-15degreesC above ambient water temperatures [2, 5]. Although the function of neural warming in fishes has been the subject of considerable speculation [1, 6, 7], the biological significance of this unusual ability has until now remained unknown. We show here that warming the retina significantly improves temporal resolution, and hence the detection of rapid motion, in fast-swimming predatory fishes such as the swordfish. Depending on diving depth, temporal resolution can be more than ten times greater in these fishes than in fishes with eyes at the same temperature as the surrounding water. The enhanced temporal resolution allowed by heated eyes provides warm-blooded and highly visual oceanic predators, such as swordfishes, tunas, and sharks, with a crucial advantage over their agile, cold-blooded prey.
Resumo:
The parasite fauna of Spanish mackerel Scomberomorus commerson from three regions off eastern Australia was examined for evidence of separate stocks. The abundance of five metacestodes was very similar in all areas suggesting that extensive mixing of the fish occurs along the coast, unlike the Situation across northern Australia where large differences have been found between regions. The similarity in abundances of two metacestodes from Townsville fish and south-east Queensland fish Suggests that these two regions have fish with very similar histories. The data lead to the conclusion that the seasonal fishery for Spanish mackerel off south-east Queensland is based on a random group of fish from the same origin as fish sampled off Townsville and is not a subpopulation that moves south each year. (c) 2006 The Fisheries Society of the British Isles.