923 resultados para 620106 Sugar
Resumo:
Australian sugar-producing regions have differed in terms of the extent and rate of incorporation of new technology into harvesting systems. The Mackay sugar industry has lagged behind most other sugar-producing regions in this regard. The reasons for this are addressed by invoking an evolutionary economics perspective. The development of harvesting systems, and the role of technology in shaping them, is mapped and interpreted using the concept of path dependency. Key events in the evolution of harvesting systems are identified, which show how the past has shaped the regional development of harvesting systems. From an evolutionary economics perspective, the outcomes observed are the end result of a specific history.
Resumo:
In broader catchment scale investigations, there is a need to understand and ultimately exploit the spatial variation of agricultural crops for an improved economic return. In many instances, this spatial variation is temporally unstable and may be different for various crop attributes and crop species. In the Australian sugar industry, the opportunity arose to evaluate the performance of 231 farms in the Tully Mill area in far north Queensland using production information on cane yield (t/ha) and CCS ( a fresh weight measure of sucrose content in the cane) accumulated over a 12-year period. Such an arrangement of data can be expressed as a 3-way array where a farm x attribute x year matrix can be evaluated and interactions considered. Two multivariate techniques, the 3-way mixture method of clustering and the 3-mode principal component analysis, were employed to identify meaningful relationships between farms that performed similarly for both cane yield and CCS. In this context, farm has a spatial component and the aim of this analysis was to determine if systematic patterns in farm performance expressed by cane yield and CCS persisted over time. There was no spatial relationship between cane yield and CCS. However, the analysis revealed that the relationship between farms was remarkably stable from one year to the next for both attributes and there was some spatial aggregation of farm performance in parts of the mill area. This finding is important, since temporally consistent spatial variation may be exploited to improve regional production. Alternatively, the putative causes of the spatial variation may be explored to enhance the understanding of sugarcane production in the wet tropics of Australia.
Resumo:
A steady state mathematical model for co-current spray drying was developed for sugar-rich foods with the application of the glass transition temperature concept. Maltodextrin-sucrose solution was used as a sugar-rich food model. The model included mass, heat and momentum balances for a single droplet drying as well as temperature and humidity profile of the drying medium. A log-normal volume distribution of the droplets was generated at the exit of the rotary atomizer. This generation created a certain number of bins to form a system of non-linear first-order differential equations as a function of the axial distance of the drying chamber. The model was used to calculate the changes of droplet diameter, density, temperature, moisture content and velocity in association with the change of air properties along the axial distance. The difference between the outlet air temperature and the glass transition temperature of the final products (AT) was considered as an indicator of stickiness of the particles in spray drying process. The calculated and experimental AT values were close, indicating successful validation of the model. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The sugarcane plant, with its enormous genetic capacity to accumulate carbon and manufacture and store sucrose, also has the potential to accumulate carbon and metabolically create a wide range of new molecules for industrial and other commercial uses. The extent to which this change can be developed and realised commercially is a function of the technical competence of the industry's R&D capacity, the reality of the commercial drivers which support this global agenda, and the determination of the industry to achieve such goals. The outcomes of existing R&D work already strongly support the technical challenges of this opportunity in sugarcane. The current challenge remains the commercialisation of the technology in a global market in which the current business structures and systems for the manufacture and distribution of existing (competitive) products makes the development of new product lines a higher risk than might otherwise be the case. This is despite all the claims that global markets are expecting and (in some cases) legislating the creation of more sustainable production systems. The options and issues for the development of a sugarcane biofactory system are discussed.
Resumo:
Populations of the planthopper vector Perkinsiella saccharicida on sugarcane cultivars resistant (cvs Q110 and Q87), moderately resistant (cvs Q90 and Q124) and susceptible (evs NCo310 and Q 102) to Fiji disease with known field resistance scores were monitored on the plant (2000-2001) and ratoon (2001-2002) crops. In both crops, the vector population remained very low, reaching its peak in the autumn. The vector population was significantly higher on cultivars susceptible to Fiji disease than on cultivars moderately resistant and resistant to Fiji disease. The number of R saccharicida adults, nymphs and oviposition sites per plant increased with the increase in the Fiji disease susceptibility. The results suggest that under low vector density, cultivar preference by the planthopper vector mediates Fiji disease resistance in sugarcane. To obtain resistance ratings in the glasshouse that reflect field resistance, glasshouse-screening trials should be conducted under both low and high vector densities, and the cultivar preference of the planthopper vector recorded along with Fiji disease incidence.