985 resultados para 612.014415
Resumo:
Background: Isometric grip strength, evaluated with a handgrip dynamometer, is a marker of current nutritional status and cardiometabolic risk and future morbidity and mortality. We present reference values for handgrip strength in healthy young Colombian adults (aged 18 to 29 years). Methods: The sample comprised 5.647 (2.330 men and 3.317 women) apparently healthy young university students (mean age, 20.6±2.7 years) attending public and private institutions in the cities of Bogota and Cali (Colombia). Handgrip strength was measured two times with a TKK analogue dynamometer in both hands and the highest value used in the analysis. Sex- and age-specific normative values for handgrip strength were calculated using the LMS method and expressed as tabulated percentiles from 3 to 97 and as smoothed centile curves (P3, P10, P25, P50, P75, P90 and P97). Results: Mean values for right and left handgrip strength were 38.1±8.9 and 35.9±8.6 kg for men, and 25.1±8.7 and 23.3±8.2 kg for women, respectively. Handgrip strength increased with age in both sexes and was significantly higher in men in all age categories. The results were generally more homogeneous amongst men than women. Conclusions: Sex- and age-specific handgrip strength normative values among healthy young Colombian adults are defined. This information may be helpful in future studies of secular trends in handgrip strength and to identify clinically relevant cut points for poor nutritional and elevated cardiometabolic risk in a Latin American population. Evidence of decline in handgrip strength before the end of the third decade is of concern and warrants further investigation
Resumo:
Large Dynamic Message Signs (DMSs) have been increasingly used on freeways, expressways and major arterials to better manage the traffic flow by providing accurate and timely information to drivers. Overhead truss structures are typically employed to support those DMSs allowing them to provide wider display to more lanes. In recent years, there is increasing evidence that the truss structures supporting these large and heavy signs are subjected to much more complex loadings than are typically accounted for in the codified design procedures. Consequently, some of these structures have required frequent inspections, retrofitting, and even premature replacement. Two manufacturing processes are primarily utilized on truss structures - welding and bolting. Recently, cracks at welding toes were reported for the structures employed in some states. Extremely large loads (e.g., due to high winds) could cause brittle fractures, and cyclic vibration (e.g., due to diurnal variation in temperature or due to oscillations in the wind force induced by vortex shedding behind the DMS) may lead to fatigue damage, as these are two major failures for the metallic material. Wind and strain resulting from temperature changes are the main loads that affect the structures during their lifetime. The American Association of State Highway and Transportation Officials (AASHTO) Specification defines the limit loads in dead load, wind load, ice load, and fatigue design for natural wind gust and truck-induced gust. The objectives of this study are to investigate wind and thermal effects in the bridge type overhead DMS truss structures and improve the current design specifications (e.g., for thermal design). In order to accomplish the objective, it is necessary to study structural behavior and detailed strain-stress of the truss structures caused by wind load on the DMS cabinet and thermal load on the truss supporting the DMS cabinet. The study is divided into two parts. The Computational Fluid Dynamics (CFD) component and part of the structural analysis component of the study were conducted at the University of Iowa while the field study and related structural analysis computations were conducted at the Iowa State University. The CFD simulations were used to determine the air-induced forces (wind loads) on the DMS cabinets and the finite element analysis was used to determine the response of the supporting trusses to these pressure forces. The field observation portion consisted of short-term monitoring of several DMS Cabinet/Trusses and long-term monitoring of one DMS Cabinet/Truss. The short-term monitoring was a single (or two) day event in which several message sign panel/trusses were tested. The long-term monitoring field study extended over several months. Analysis of the data focused on trying to identify important behaviors under both ambient and truck induced winds and the effect of daily temperature changes. Results of the CFD investigation, field experiments and structural analysis of the wind induced forces on the DMS cabinets and their effect on the supporting trusses showed that the passage of trucks cannot be responsible for the problems observed to develop at trusses supporting DMS cabinets. Rather the data pointed toward the important effect of the thermal load induced by cyclic (diurnal) variations of the temperature. Thermal influence is not discussed in the specification, either in limit load or fatigue design. Although the frequency of the thermal load is low, results showed that when temperature range is large the restress range would be significant to the structure, especially near welding areas where stress concentrations may occur. Moreover stress amplitude and range are the primary parameters for brittle fracture and fatigue life estimation. Long-term field monitoring of one of the overhead truss structures in Iowa was used as the research baseline to estimate the effects of diurnal temperature changes to fatigue damage. The evaluation of the collected data is an important approach for understanding the structural behavior and for the advancement of future code provisions. Finite element modeling was developed to estimate the strain and stress magnitudes, which were compared with the field monitoring data. Fatigue life of the truss structures was also estimated based on AASHTO specifications and the numerical modeling. The main conclusion of the study is that thermal induced fatigue damage of the truss structures supporting DMS cabinets is likely a significant contributing cause for the cracks observed to develop at such structures. Other probable causes for fatigue damage not investigated in this study are the cyclic oscillations of the total wind load associated with the vortex shedding behind the DMS cabinet at high wind conditions and fabrication tolerances and induced stresses due to fitting of tube to tube connections.
Resumo:
kuv., 13 x 21 cm
Resumo:
kuv., 13 x 21 cm
Resumo:
Collection : Altfranzösische Bibliothek ; IX
Resumo:
UANL
Resumo:
Tesis (Doctorado en Ciencias con Especialidad en Biotecnología) UANL
Resumo:
Two wafers of the NIST (formerly NBS) glass standard SRM 612 recently irradiated have been compared to the pre-irradiated wafers RT3 and RT4 of glass SRM 962-7, stored for 9 years at 5°C, and SRM 962, stored for 20 years at room temperature. Track area densities on internal surfaces of the glass as well as track size measurements suggest that (1) the old SRM 962 and the more recent SRM 962a calibrations are consistent and (2) annealing of the fission tracks in the pre-irradiated wafers is negligible. This last experimental result enables a direct comparison of contemporary and previous fission track age calibrations. © 1995.