33 resultados para 60001
Resumo:
Fractional mathematical models represent a new approach to modelling complex spatial problems in which there is heterogeneity at many spatial and temporal scales. In this paper, a two-dimensional fractional Fitzhugh-Nagumo-monodomain model with zero Dirichlet boundary conditions is considered. The model consists of a coupled space fractional diffusion equation (SFDE) and an ordinary differential equation. For the SFDE, we first consider the numerical solution of the Riesz fractional nonlinear reaction-diffusion model and compare it to the solution of a fractional in space nonlinear reaction-diffusion model. We present two novel numerical methods for the two-dimensional fractional Fitzhugh-Nagumo-monodomain model using the shifted Grunwald-Letnikov method and the matrix transform method, respectively. Finally, some numerical examples are given to exhibit the consistency of our computational solution methodologies. The numerical results demonstrate the effectiveness of the methods.
Resumo:
Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z
Resumo:
Référence bibliographique : Rol, 60001
Resumo:
Ejemplar fotocopiado
Resumo:
The associationist account for early word learning is based on the co-occurrence between referents and words. Here we introduce a noisy cross-situational learning scenario in which the referent of the uttered word is eliminated from the context with probability gamma, thus modeling the noise produced by out-of-context words. We examine the performance of a simple associative learning algorithm and find a critical value of the noise parameter gamma(c) above which learning is impossible. We use finite-size scaling to show that the sharpness of the transition persists across a region of order tau(-1/2) about gamma(c), where tau is the number of learning trials, as well as to obtain the learning error (scaling function) in the critical region. In addition, we show that the distribution of durations of periods when the learning error is zero is a power law with exponent -3/2 at the critical point. Copyright (C) EPLA, 2012