974 resultados para 6 cyano 7 nitro 2,3 quinoxalinedione
Resumo:
We examined the effects of beta-pompilidotoxin (beta-PMTX), a neurotoxin derived from wasp venom. on synaptic transmission in the mammalian central nervous system (CNS). Using hippocampal slice preparations of rodents, we made both extracellular and intracellular recordings from the CA1 pyramidal neurons in response to stimulation of the Schaffer collateral/commissural fibers. Application of 5-10 muM beta-PMTX enhanced excitatory postsynaptic potentials (EPSPs) but suppressed the fast component of the inhibitory postsynaptic potentials (IPSPs). In the presence of 10 muM bicuculline, beta-PMTX potentiated EPSPs that were composed of both non-NMDA and NMDA receptor-mediated potentials. Potentiation of EPSPs was originated by repetitive firings of the prosynaptic axons, causing Summation of EPSPs. In the presence of 10 muM CNQX and 50 muM APV, beta-PMTX suppressed GABA(A) receptor-mediated fast IPSPs but retained GABA(B) receptor-mediated slow IPSPs. Our results suggest that beta-PMTX facilitates excitatory synaptic transmission by a presynaptic mechanism and that it causes overexcitation followed by block of the activity of some population of interneurons which regulate the activity of GABA(A) receptors. (C) 2001 Published by Elsevier B.V. Ireland Ltd and the Japan Neuroscience Society.
Resumo:
The loss of dopamine in idiopathic or animal models of Parkinson's disease induces synchronized low-frequency oscillatory burst-firing in subthalamic nucleus neurones. We sought to establish whether these firing patterns observed in vivo were preserved in slices taken from dopamine-depleted animals, thus establishing a role for the isolated subthalamic-globus pallidus complex in generating the pathological activity. Mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) showed significant reductions of over 90% in levels of dopamine as measured in striatum by high pressure liquid chromatography. Likewise, significant reductions in tyrosine hydroxylase immunostaining within the striatum (>90%) and tyrosine hydroxylase positive cell numbers (65%) in substantia nigra were observed. Compared with slices from intact mice, neurones in slices from MPTP-lesioned mice fired significantly more slowly (mean rate of 4.2 Hz, cf. 7.2 Hz in control) and more irregularly (mean coefficient of variation of inter-spike interval of 94.4%, cf. 37.9% in control). Application of ionotropic glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 2-amino-5-phosphonopentanoic acid (AP5) and the GABAA receptor antagonist picrotoxin caused no change in firing pattern. Bath application of dopamine significantly increased cell firing rate and regularized the pattern of activity in cells from slices from both MPTP-treated and control animals. Although the absolute change was more modest in control slices, the maximum dopamine effect in the two groups was comparable. Indeed, when taking into account the basal firing rate, no differences in the sensitivity to dopamine were observed between these two cohorts. Furthermore, pairs of subthalamic nucleus cells showed no correlated activity in slices from either control (21 pairs) or MPTP-treated animals (20 pairs). These results indicate that the isolated but interconnected subthalamic-globus pallidus network is not itself sufficient to generate the aberrant firing patterns in dopamine-depleted animals. More likely, inputs from other regions, such as the cortex, are needed to generate pathological oscillatory activity. © 2006 IBRO.
Resumo:
In vitro, nitric oxide (NO) inhibits the firing rate of magnocellular neurosecretory cells (MNCs) of hypothalamic supraoptic and paraventricular nuclei and this effect has been attributed to GABAergic activation. However, little is known about the direct effects of NO in MNCs. We used the patch-clamp technique to verify the effect Of L-arginine, a precursor for NO synthesis, and N-omega-nitro-L-arginine methyl ester hydrochloride (L-NAME), an inhibitor of NOS, on spontaneous electrical activity of MNCs after glutamatergic and GABAergic blockade in Wistar rat brain slices. 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX) (10 mu M) and DL-2-amino-5-phosphonovaleric acid (DL-AP5) (30 mu M) were used to block postsynaptic glutamatergic currents, and picrotoxin (30 mu M) and saclofen (30 mu M) to block ionotropic and metabotropic postsynaptic GABAergic currents. Under these conditions, 500 mu M L-arginine decreased the firing rate from 3.7 +/- 0.6 Hz to 1.3 +/- 0.3 Hz. Conversely, 100 mu M L-NAME increased the firing rate from 3.0 +/- 0.3 Hz to 5.8 +/- 0.4 Hz. All points histogram analysis showed changes in resting potential from -58.1 +/- 0.8 mV to -62.2 +/- 1.1 mV in the presence of L-arginine and from -59.8 +/- 0.7 mV to -56.9 +/- 0.8 mV by L-NAME. Despite the nitrergic modulator effect on firing rate, some MNCs had no significant changes in their resting potential. In those neurons, hyperpolarizing after-potential (HAP) amplitude increased from 12.4 +/- 1.2 mV to 16.8 +/- 0.7 mV by L-arginine, but without significant changes by L-NAME treatment. To our knowledge, this is the first demonstration that NO can inhibit MNCs independent of GABAergic inputs. Further, our results point to HAP as a potential site for nitrergic modulation. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Glutamate was previously shown to enhance aerobic glycolysis i.e. increase glucose utilization and lactate production with no change in oxygen levels, in mouse cortical astrocytes by a mechanism involving glutamate uptake. It is reported here that a similar response is produced in both hippocampal and cerebellar astrocytes. Application of the cognitive-enhancing drug CX546 promoted further enhancement of glucose utilization by astrocytes from each brain area following glutamate exposure. alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors represent the purported molecular target of cognitive-enhancing drugs such as CX546, and the presence of AMPA receptor subunits GluR1-4 was evidenced in astrocytes from all three regions by immunocytochemistry. AMPA itself did not stimulate aerobic glycolysis, but in the presence of CX546, a strong enhancement of glucose utilization and lactate production was obtained in cortical, hippocampal and cerebellar astrocytes. The effect of CX546 was concentration-dependent, with an EC(50) of 93.2 microm in cortical astrocytes. AMPA-induced glucose utilization in the presence of CX546 was prevented by the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and the negative modulator GYKI 52466. In addition, the metabolic effect of CX546 in the presence of AMPA was mimicked by the AMPA receptor modulator cyclothiazide. Our data suggest that astrocyte energetics represents a novel target for cognitive-enhancing drugs acting as AMPA receptor modulators.
Resumo:
Polygala cyparissias is a plant widespread in Southern Latin America. Recently, we demonstrated the gastroprotective activity of the extract, as well as for one of the isolated metabolites-1,7-dihydroxy-2,3-methylenedioxyxanthone (MDX). In this study, a HPLC method for the quantification of MDX was validated. The HPLC method was linear (0.5-24 µg mL-1 of MDX) with good accuracy, precision and robustness. The content of MDX in the extracts from whole and different parts of the plant ranged from 0 to 5.4 mg g-1 and the gastroprotective index ranged from 72.1 to 99.1%. Thus, the method might be used for the standardization of the extracts based on the MDX marker.
Resumo:
A thermodynamic study involving 7-nitro-1,3,5-triaza adamantane, 1, and its interaction with metal cations in nonaqueous media is first reported. Solubility data of 1 in various solvents were used to derive the standard Gibbs energies of solution, Delta G(s)degrees in these solvents. The effect of solvation in the different media was assessed from the Gibbs energy of transfer taking acetonitrile as a reference solvent. (1)H NMR studies of the interaction of 1 and metal cations were carried out in CD(3)CN and CD(3)OD and the data are reported. Conductance measurements revealed that this ligand forms lead(II) or zinc complexes of 1: 1 stoichiometry in acetonitrile. It also revealed a stoichiometry of two molecules of 1 per mercury(II) and two cadmiu (II) ions per molecule of 1. The addition of silver salt to 1 led to the precipitation of the silver-1 complex which was isolated and characterized by X-ray crystallography. At variance with conductance measurements in solution, in the solid state the X-ray structure show`s a 1:1 stoichiometry in the Hg(II) complex. The themiodynamics of complexation of 1 and these cations provide a quantitative assessment of the selective behavior of this ligand for ions of environmental relevance.
Resumo:
When performed at increased external [Ca2+]/[Mg2+] ratio (2.5 mM/0.5 mM), temporary block of A1 adenosine receptors in hippocampus [by 8-cyclopentyltheophylline (CPT)] leads to a dramatic and irreversible change in the excitatory postsynaptic current (EPSC) evoked by Schaffer collateral/commissural (SCC) stimulation and recorded by in situ patch clamp in CA1 pyramidal neurons. The duration of the EPSC becomes stimulus dependent, increasing with increase in stimulus strength. The later occurring component of the EPSC is carried through N-methyl-D-aspartate (NMDA) receptor-operated channels but disappears under either the NMDA antagonist 2-amino-5-phosphonovaleric acid (APV) or the non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). These findings indicate that the late component of the SCC-evoked EPSC is polysynaptic: predominantly non-NMDA receptor-mediated SCC inputs excite CA1 neurons that recurrently excite each other by predominantly NDMA receptor-mediated synapses. These recurrent connections are normally silent but become active after CPT treatment, leading to enhancement of the late component of the EPSC. The activity of these connections is maintained for at least 2 hr after CPT removal. When all functional NMDA receptors are blocked by dizocilpine maleate (MK-801), subsequent application of CPT leads to a partial reappearance of NMDA receptor-mediated EPSCs evoked by SCC stimulation, indicating that latent NMDA receptors are recruited. Altogether, these findings indicate the existence of a powerful system of NMDA receptor-mediated synaptic contacts in SCC input to hippocampal CA1 pyramidal neurons and probably also in reciprocal connections between these neurons, which in the usual preparation are kept latent by activity of A1 receptors.
Resumo:
With x-ray absorption spectroscopy and polarized neutron reflectometry we studied how the magnetic proximity effect at the interface between the cuprate high-TC superconductor YBa_(2)Cu_(3)O_(7) (YBCO) and the ferromagnet La_(2/3)Ca_(1/3)MnO_(3) (LCMO) is related to the electronic and magnetic properties of the LCMO layers. In particular, we explored how the magnitude of the ferromagnetic Cu moment on the YBCO side depends on the strength of the antiferromagnetic (AF) exchange coupling with the Mn moment on the LCMO side. We found that the Cu moment remains sizable if the AF coupling with the Mn moments is strongly reduced or even entirely suppressed. The ferromagnetic order of the Cu moments thus seems to be intrinsic to the interfacial CuO_(2) planes and related to a weakly ferromagnetic intraplanar exchange interaction. The latter is discussed in terms of the partial occupation of the Cu 3d_(3z^(2)−r^(2)) orbitals, which occurs in the context of the so-called orbital reconstruction of the interfacial Cu ions.
Resumo:
Indirect evidence indicates that morphine-3-glucuronide (M3G) may contribute significantly to the neuro-excitatory side effects (myoclonus and allodynia) of large-dose systemic morphine. To gain insight into the mechanism underlying M3G' s excitatory behaviors, We used fluo-3 fluorescence digital imaging techniques to assess the acute effects of M3G (5-500 muM) on the cytosolic calcium concentration ([Ca2+](CYT)) in cultured embryonic hippocampal neurones. Acute (3 min) exposure of neurones to M3G evoked [Ca2+](CYT) transients that were typically either (a) transient oscillatory responses characterized by a rapid increase in [Ca2+](CYT) oscillation amplitude that was sustained for at least similar to30 s or (b) a sustained increase in [Ca2+](CYT) that slowly recovered to baseline. Naloxone-pretreatment decreased the proportion of M3G-responsive neurones by 10%-25%, implicating a predominantly non-opioidergic mechanism. Although the naloxone-insensitive M3G-induced increases in [Ca2+](CYT) were completely blocked by N-methyl-D-aspartic acid (NMDA) antagonists and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (alphaamino-3-hydroxy-5-methyl-4-isoxazolepropiordc acid/ kainate antagonist), CNQX did not block the large increase in [Ca2+](CYT) evoked by NMDA (as expected), confirming that N13G indirectly activates the NMDA receptor. Additionally, tetrodotoxin (Na+ channel blocker), baclofen (gamma-aminobutyric acid, agonist), MVIIC (P/Q-type calcium channel blocker), and nifedipine (L-type calcium channel blocker) all abolished M3G-induced increases in [Ca2+](CYT), suggesting that M3G may produce its neuro-excitatory effects by modulating neurotransmitter release. However, additional characterization is required.
Resumo:
The mode of Na+ entry and the dynamics of intracellular Na+ concentration ([Na+]i) changes consecutive to the application of the neurotransmitter glutamate were investigated in mouse cortical astrocytes in primary culture by video fluorescence microscopy. An elevation of [Na+]i was evoked by glutamate, whose amplitude and initial rate were concentration dependent. The glutamate-evoked Na+ increase was primarily due to Na+-glutamate cotransport, as inhibition of non-NMDA ionotropic receptors by 6-cyano-7-nitroquinoxiline-2,3-dione (CNQX) only weakly diminished the response and D-aspartate, a substrate of the glutamate transporter, produced [Na+]i elevations similar to those evoked by glutamate. Non-NMDA receptor activation could nevertheless be demonstrated by preventing receptor desensitization using cyclothiazide. Thus, in normal conditions non-NMDA receptors do not contribute significantly to the glutamate-evoked Na+ response. The rate of Na+ influx decreased during glutamate application, with kinetics that correlate well with the increase in [Na+]i and which depend on the extracellular concentration of glutamate. A tight coupling between Na+ entry and Na+/K+ ATPase activity was revealed by the massive [Na+]i increase evoked by glutamate when pump activity was inhibited by ouabain. During prolonged glutamate application, [Na+]i remains elevated at a new steady-state where Na+ influx through the transporter matches Na+ extrusion through the Na+/K+ ATPase. A mathematical model of the dynamics of [Na+]i homeostasis is presented which precisely defines the critical role of Na+ influx kinetics in the establishment of the elevated steady state and its consequences on the cellular bioenergetics. Indeed, extracellular glutamate concentrations of 10 microM already markedly increase the energetic demands of the astrocytes.
Resumo:
Intra-amygdala infusion of the non-N-methyl-D-aspartate (NMDA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) prior to testing impairs inhibitory avoidance retention test performance. Increased training attenuates the impairing effects of amygdala lesions and intra-amygdala infusions of CNQX. The objective of the present study was to determine the effects of additional training on the impairing effects of intra-amygdala CNQX on expression of the inhibitory avoidance task. Adult female Wistar rats bilaterally implanted with cannulae into the border between the central and the basolateral nuclei of the amygdala were submitted to a single session or to three training sessions (0.2 mA, 24-h interval between sessions) in a step-down inhibitory avoidance task. A retention test session was held 48 h after the last training. Ten minutes prior to the retention test session, the animals received a 0.5-µl infusion of CNQX (0.5 µg) or its vehicle (25% dimethylsulfoxide in saline). The CNQX infusion impaired, but did not block, retention test performance in animals submitted to a single training session. Additional training prevented the impairing effect of CNQX. The results suggest that amygdaloid non-NMDA receptors may not be critical for memory expression in animals given increased training.
Resumo:
P2X receptors are expressed on ventrolateral medulla projecting paraventricular nucleus (PVN) neurons. Here, we investigate the role of adenosine 5′-triphosphate (ATP) in modulating sympathetic nerve activity (SNA) at the level of the PVN. We used an in situ arterially perfused rat preparation to determine the effect of P2 receptor activation and the putative interaction between purinergic and glutamatergic neurotransmitter systems within the PVN on lumbar SNA (LSNA). Unilateral microinjection of ATP into the PVN induced a dose-related increase in the LSNA (1 nmol: 38 ± 6 %, 2.5 nmol: 72 ± 7 %, 5 nmol: 96 ± 13 %). This increase was significantly attenuated by blockade of P2 receptors (pyridoxalphosphate-6-azophenyl-20,40-disulphonic acid, PPADS) and glutamate receptors (kynurenic acid, KYN) or a combination of both. The increase in LSNA elicited by L-glutamate microinjection into the PVN was not affected by a previous injection of PPADS. Selective blockade of non-N-methyl-D-aspartate receptors (6-cyano-7-nitroquinoxaline-2,3-dione disodium salt, CNQX), but not N-methyl-D-aspartate receptors (NMDA) receptors (DL-2-amino-5-phosphonopentanoic acid, AP5), attenuated the ATP-induced sympathoexcitatory effects at the PVN level. Taken together, our data show that purinergic neurotransmission within the PVN is involved in the control of SNA via P2 receptor activation. Moreover, we show an interaction between P2 receptors and non-NMDA glutamate receptors in the PVN suggesting that these functional interactions might be important in the regulation of sympathetic outflow
Resumo:
Olfactory glomeruli are the loci where the first odor-representation map emerges. The glomerular layer comprises exquisite local synaptic circuits for the processing of olfactory coding patterns immediately after their emergence. To understand how an odor map is transferred from afferent terminals to postsynaptic dendrites, it is essential to directly monitor the odor-evoked glomerular postsynaptic activity patterns. Here we report the use of a transgenic mouse expressing a Ca(2+)-sensitive green fluorescence protein (GCaMP2) under a Kv3.1 potassium-channel promoter. Immunostaining revealed that GCaMP2 was specifically expressed in mitral and tufted cells and a subpopulation of juxtaglomerular cells but not in olfactory nerve terminals. Both in vitro and in vivo imaging combined with glutamate receptor pharmacology confirmed that odor maps reported by GCaMP2 were of a postsynaptic origin. These mice thus provided an unprecedented opportunity to analyze the spatial activity pattern reflecting purely postsynaptic olfactory codes. The odor-evoked GCaMP2 signal had both focal and diffuse spatial components. The focalized hot spots corresponded to individually activated glomeruli. In GCaMP2-reported postsynaptic odor maps, different odorants activated distinct but overlapping sets of glomeruli. Increasing odor concentration increased both individual glomerular response amplitude and the total number of activated glomeruli. Furthermore, the GCaMP2 response displayed a fast time course that enabled us to analyze the temporal dynamics of odor maps over consecutive sniff cycles. In summary, with cell-specific targeting of a genetically encoded Ca(2+) indicator, we have successfully isolated and characterized an intermediate level of odor representation between olfactory nerve input and principal mitral/tufted cell output.
Resumo:
In cultured oligodendrocytes isolated from perinatal rat optic nerves, we have analyzed the expression of ionotropic glutamate receptor subunits as well as the effect of the activation of these receptors on oligodendrocyte viability. Reverse transcription–PCR, in combination with immunocytochemistry, demonstrated that most oligodendrocytes differentiated in vitro express the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluR3 and GluR4 and the kainate receptor subunits GluR6, GluR7, KA1 and KA2. Acute and chronic exposure to kainate caused extensive oligodendrocyte death in culture. This effect was partially prevented by the AMPA receptor antagonist GYKI 52466 and was completely abolished by the non-N-methyl-d-aspartate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), suggesting that both AMPA and kainate receptors mediate the observed kainate toxicity. Furthermore, chronic application of kainate to optic nerves in vivo resulted in massive oligodendrocyte death which, as in vitro, could be prevented by coinfusion of the toxin with CNQX. These findings suggest that excessive activation of the ionotropic glutamate receptors expressed by oligodendrocytes may act as a negative regulator of the size of this cell population.
Resumo:
A limited midline myelotomy at T10 can relieve pelvic cancer pain in patients. This observation is explainable in light of strong evidence in support of the existence of a visceral pain pathway that ascends in the dorsal column (DC) of the spinal cord. In rats and monkeys, responses of neurons in the ventral posterolateral thalamic nucleus to noxious colorectal distention are dramatically reduced after a lesion of the DC at T10, but not by interruption of the spinothalamic tract. Blockade of transmission of visceral nociceptive signals through the rat sacral cord by microdialysis administration of morphine or 6-cyano-7-nitroquinoxaline-2,3-dione shows that postsynaptic DC neurons in the sacral cord transmit visceral nociceptive signals to the gracile nucleus. Retrograde tracing studies in rats demonstrate a concentration of postsynaptic DC neurons in the central gray matter of the L6-S1 spinal segments, and anterograde tracing studies show that labeled axons ascend from this region to the gracile nucleus. A similar projection from the midthoracic spinal cord ends in the gracile and cuneate nuclei. Behavioral experiments demonstrate that DC lesions reduce the nocifensive responses produced by noxious stimulation of the pancreas and duodenum, as well as the electrophysiological responses of ventral posterolateral neurons to these stimuli. Repeated regional blood volume measurements were made in the thalamus and other brain structures in anesthetized monkeys in response to colorectal distention by functional MRI. Sham surgery did not reduce the regional blood volume changes, whereas the changes were eliminated by a DC lesion at T10.