4 resultados para 5q35


Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE(S): An individual's risk of developing cardiovascular disease (CVD) is influenced by genetic factors. This study focussed on mapping genetic loci for CVD-risk traits in a unique population isolate derived from Norfolk Island. METHODS: This investigation focussed on 377 individuals descended from the population founders. Principal component analysis was used to extract orthogonal components from 11 cardiovascular risk traits. Multipoint variance component methods were used to assess genome-wide linkage using SOLAR to the derived factors. A total of 285 of the 377 related individuals were informative for linkage analysis. RESULTS: A total of 4 principal components accounting for 83% of the total variance were derived. Principal component 1 was loaded with body size indicators; principal component 2 with body size, cholesterol and triglyceride levels; principal component 3 with the blood pressures; and principal component 4 with LDL-cholesterol and total cholesterol levels. Suggestive evidence of linkage for principal component 2 (h(2) = 0.35) was observed on chromosome 5q35 (LOD = 1.85; p = 0.0008). While peak regions on chromosome 10p11.2 (LOD = 1.27; p = 0.005) and 12q13 (LOD = 1.63; p = 0.003) were observed to segregate with principal components 1 (h(2) = 0.33) and 4 (h(2) = 0.42), respectively. CONCLUSION(S): This study investigated a number of CVD risk traits in a unique isolated population. Findings support the clustering of CVD risk traits and provide interesting evidence of a region on chromosome 5q35 segregating with weight, waist circumference, HDL-c and total triglyceride levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Asbestos is a well known cancer-causing mineral fibre, which has a synergistic effect on lung cancer risk in combination with tobacco smoking. Several in vitro and in vivo experiments have demonstrated that asbestos can evoke chromosomal damage and cause alterations as well as gene expression changes. Lung tumours, in general, have very complex karyotypes with several recurrently gained and lost chromosomal regions and this has made it difficult to identify specific molecular changes related primarily to asbestos exposure. The main aim of these studies has been to characterize asbestos-related lung cancer at a molecular level. Methods: Samples from asbestos-exposed and non-exposed lung cancer patients were studied using array comparative genomic hybridization (aCGH) and fluorescent in situ hybridization (FISH) to detect copy number alterations (CNA) as well as microsatellite analysis to detect allelic imbalance (AI). In addition, asbestos-exposed cell lines were studied using gene expression microarrays. Results: Eighteen chromosomal regions showing differential copy number in the lung tumours of asbestos-exposed patients compared to those of non-exposed patients were identified. The most significant differences were detected at 2p21-p16.3, 5q35.3, 9q33.3-q34.11, 9q34.13-q34.3, 11p15.5, 14q11.2 and 19p13.1-p13.3 (p<0.005). The alterations at 2p and 9q were validated and characterized in detail using AI and FISH analysis in a larger study population. Furthermore, in vitro studies were performed to examine the early gene expression changes induced by asbestos in three different lung cell lines. The results revealed specific asbestos-associated gene expression profiles and biological processes as well as chromosomal regions enriched with genes believed to contribute to the common asbestos-related responses in the cell lines. Interestingly, the most significant region enriched with asbestos-response genes was identified at 2p22, close to the previously identified region showing asbestos-related CNA in lung tumours. Additionally, in this thesis, the dysregulated biological processes (Gene Ontology terms) detected in the cell line experiment were compared to dysregulated processes identified in patient samples in a later study (Ruosaari et al., 2008a). Commonly affected processes such as those related to protein ubiquitination, ion transport and surprisingly sensory perception of smell were identified. Conclusions: The identification of specific CNA and dysregulated biological processes shed some light on the underlying genes acting as mediators in asbestos-related lung carcinogenesis. It is postulated that the combination of several asbestos-specific molecular alterations could be used to develop a diagnostic method for the identification of asbestos-related lung cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: High grade serous carcinoma whether ovarian, tubal or primary peritoneal, continues to be the most lethal gynecologic malignancy in the USA. Although combination chemotherapy and aggressive surgical resection has improved survival in the past decade the majority of patients still succumb to chemo-resistant disease recurrence. It has recently been reported that amplification of 5q31-5q35.3 is associated with poor prognosis in patients with high grade serous ovarian carcinoma. Although the amplicon contains over 50 genes, it is notable for the presence of several members of the fibroblast growth factor signaling axis. In particular acidic fibroblast growth factor (FGF1) has been demonstrated to be one of the driving genes in mediating the observed prognostic effect of the amplicon in ovarian cancer patients. This study seeks to further validate the prognostic value of fibroblast growth receptor 4 (FGFR4), another candidate gene of the FGF/FGFR axis located in the same amplicon. The emphasis will be delineating the role the FGF1/FGFR4 signaling axis plays in high grade serous ovarian carcinoma; and test the feasibility of targeting the FGF1/FGFR4 axis therapeutically. Materials and Methods: Spearman and Pearson correlation studies on data generated from array CGH and transcriptome profiling analyses on 51 microdissected tumor samples were used to identify genes located on chromosome 5q31-35.3 that showed significant correlation between DNA and mRNA copy numbers. Significant correlation between FGF1 and FGFR4 DNA copy numbers was further validated by qPCR analysis on DNA isolated from 51 microdissected tumor samples. Immunolocalization and quantification of FGFR4 expression were performed on paraffin embedded tissue samples from 183 cases of high-grade serous ovarian carcinoma. The expression was then correlated with clinical data to assess impact on survival. The expression of FGF1 and FGFR4 in vitro was quantified by real-time PCR and western blotting in six high-grade serous ovarian carcinoma cell lines and compared to those in human ovarian surface epithelial cells to identify overexpression. The effect of FGF1 on these cell lines after serum starvation was quantified for in vitro cellular proliferation, migration/invasion, chemoresistance and survival utilizing a combination of commercially available colorimetric, fluorometric and electrical impedance assays. FGFR4 expression was then transiently silenced via siRNA transfection and the effects on response to FGF1, cellular proliferation, and migration were quantified. To identify relevant cellular pathways involved, responsive cell lines were transduced with different transcription response elements using the Cignal-Lenti reporter system and treated with FGF1 with and without transient FGFR4 knock down. This was followed by western blot confirmation for the relevant phosphoproteins. Anti-FGF1 antibodies and FGFR trap proteins were used to attempt inhibition of FGF mediated phenotypic changes and relevant signaling in vitro. Orthotopic intraperitoneal tumors were established in nude mice using serous cell lines that have been previously transfected with luciferase expressing constructs. The mice were then treated with FGFR trap protein. Tumor progression was then followed via bioluminescent imaging. The FGFR4 gene from 52 clinical samples was sequenced to screen for mutations. Results: FGFR4 DNA and mRNA copy numbers were significantly correlated and FGFR4 DNA copy number was significantly correlated with that of FGF1. Survival of patients with high FGFR4 expressing tumors was significantly shorter that those with low expression(median survival 28 vs 55 month p< 0.001) In a multivariate cox regression model FGFR expression significantly increased risk of death (HR 2.1, p<0.001). FGFR4 expression was significantly higher in all cell lines tested compared to HOSE, OVCA432 cell line in particular had very high expression suggesting amplification. FGF1 was also particularly overexpressed in OVCA432. FGF1 significantly increased cell survival after serum deprivation in all cell lines. Transient knock down of FGFR4 caused significant reduction in cell migration and proliferation in vitro and significantly decreased the proliferative effects of FGF1 in vitro. FGFR1, FGFR4 traps and anti-FGF1 antibodies did not show activity in vitro. OVCA432 transfected with the cignal lenti reporter system revealed significant activation of MAPK, NFkB and WNT pathways, western blotting confirmed the results. Reverse phase protein array (RPPA) analysis also showed activation of MAPK, AKT, WNT pathways and down regulation of E Cadherin. FGFR trap protein significantly reduced tumor growth in vivo in an orthotopic mouse model. Conclusions: Overexpression and amplification of several members of the FGF signaling axis present on the amplicon 5q31-35.3 is a negative prognostic indicator in high grade serous ovarian carcinoma and may drive poor survival associated with that amplicon. Activation of The FGF signaling pathway leads to downstream activation of MAPK, AKT, WNT and NFkB pathways leading to a more aggressive cancer phenotype with increased tumor growth, evasion of apoptosis and increased migration and invasion. Inhibition of FGF pathway in vivo via FGFR trap protein leads to significantly decreased tumor growth in an orthotopic mouse model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The cysteinyl-leukotrienes (cys-LTs) are proinflammatory mediators that are important in the pathophysiology of asthma. LTC4 synthase is a key enzyme in the cys-LT biosynthetic pathway, and studies in small populations have suggested that a promoter polymorphism (A(-444)C) in the gene might be associated with asthma severity and aspirin intolerance. Objective: We sought to screen the LTC4 synthase gene for polymorphisms and to determine whether there is an association between these polymorphisms and asthma severity or aspirin sensitivity in a large, well-phenotyped population and to determine whether this polymorphism is functionally relevant. Methods: The coding regions of the LTC4 synthase gene were screened for polymorphisms and the A(-444)C polymorphism was analyzed in a large Australian white adult population of mild (n = 282), moderate (n = 236), and severe asthmatic subjects (n = 86) and nonasthmatic subjects (n = 458), as well as in aspirin-intolerant asthmatic subjects (n = 67). The functional activity of the promoter polymorphism was investigated by transient transfection of HL-60 cells with a promoter construct. Results: A new polymorphism was identified in intron 1 of the gene (IVS1-10c>a) but was not associated with asthma. Association studies showed that the A(-444)C polymorphism was weakly associated with asthma per se, but there was no association between the C-444 allele and chronic asthma severity or aspirin intolerance. A meta-analysis of all the genetic studies conducted to date found significant between-study heterogeneity in C-444 allele frequencies within different clinical subgroups. In vitro functional studies showed no significant differences in transcription efficiency between constructs containing the A(-444) allele or the C-444 allele. Conclusions: Our data confirm that, independent of transcriptional activity, the C-444 allele in the LTC4 synthase gene is weakly associated with the asthma phenotype, but it is not related to disease severity or aspirin intolerance.