909 resultados para 5S ribosomal-RNA
Resumo:
Chromosomal location of the 5S ribosomal RNA gene was studied in the eastern oyster, Crassostrea virginica Gmelin. using fluorescence in situ hybridization (FISH). Metaphase chromosomes were obtained from early embryos, and the FISH probe was made by PCR (polymerase chain reaction) amplification of the 5S rRNA gene and labeled by incorporation of digoxigenin-1 1-dUTP during PCR. Hybridization was detected with fluorescein-labeled antidigoxigenin antibodies. Two pairs of FISH signals were observed on metaphase chromosomes. Karyotypic analysis showed that the 5S rRNA gene cluster is interstitially located on short arms of chromosomes 5 and 6. On chromosome 5, the 5S rRNA genes were located immediately next to the centromere, whereas on chromosome 6, they were located approximately half way between the telomere and the centromere. Chromosomes of C. virginica are difficult to identify because of their similarities in size and arm ratio, and the chromosomal location of 5S rRNA genes provides unambiguous identification of chromosomes 5 and 6. Previous studies have mapped the major rRNA gene cluster (18S-5.8S-28S) to chromosome 2. and this study shows that the 5S rRNA gene cluster is not linked to the major rRNA genes and duplicated during evolution.
Resumo:
The frequency of adenine mononucleotides (A), dinucleotides (AA) and clusters, and the positions of clusters, were studied in 502 molecules of the 5S rRNA.All frequencies were reduced in the evolutive lines of vertebrates, plants and fungi, in parallel with increasing organismic complexity. No change was observed in invertebrates. All frequencies were increased in mitochondria, plastids and mycoplasmas. The presumed relatives to the ancestors of the organelles, Rhodobacteria alfa and Cyanobacteria, showed intermediate values, relative to the eubacterial averages. Firmibacterid showed very high number of cluster sites.Clusters were more frequent in single-stranded regions in all organisms. The routes of organelles and mycoplasmas accummulated clusters at faster rates in double-stranded regions. Rates of change were higher for AA and clusters than for A in plants, vertebrates and organeltes, higher for cluster sites and A in mycoplasmas, and higher for AA and A in fungi. These data indicated that selection pressures acted more strongly on adenine clustering than on adenine frequency.It is proposed that AA and clusters, as sites of lower informational content. have the property of tolerating positional variation in the sites of other molecules (or other regions of the same molecule) that interact with the adenines. This reasoning was consistent with the degrees of genic polymorphism. low in plants and vertebrates and high in invertebrates. In the eubacteria endosymbiontic or parasitic to eukaryotes, the more tolerant RNA would be better adapted to interactions with the homologous nucleus-derived ribosomal proteins: the intermediate values observed in their precursors were interpreted as preadaptive.Among other groups, only the Deinococcus-Thermus eubacteria showed excessive AA and cluster contents, possibly related to their peculiar tolerance to mutagens, and the Ciliates showed excessive AA contents, indicative of retention of primitive characters.
Resumo:
In this study, we report the cloning and nucleotide sequence of PCR-generated 5S rDNA from the Tilapiine cichlid fish, Oreochromis niloticus. Two types of 5S rDNA were detected that differed by insertions and/or deletions and base substitutions within the non-transcribed spacer (NTS). Two 5S rDNA loci were observed by fluorescent in situ hybridization (FISH) in metaphase spreads of tilapia chromosomes. FISH using an 18S rDNA probe and silver nitrate sequential staining of 5S-FISH slides showed three 18S rDNA loci that are not syntenic to the 5S rDNA loci.
Resumo:
ERI-1 und ihm homologe Proteine sind 3‘-5‘ Exoribonukleasen mit konservierten Funktionen in der Regulation von RNA Silencing sowie der Prozessierung ribosomaler RNA. Caenorhabditis elegans ERI-1 (Enhanced RNAi 1) enthält eine konservierte ERI-1_3’hExo_like EXOIII-Domäne, die siRNAs in vitro bindet und degradiert, und deren Inaktivierung eine RNAi-Hypersensitivität zur Folge hat. ERI-1 ist phylogenetisch konserviert, und homologe Proteine wurden Reiche-übergreifend in einer Vielzahl von Modellorganismen identifiziert. RNA-Silencing-reprimierende Eigenschaften dieser Proteine wurden in einigen Fällen charakterisiert. Zusätzlich wurde für eine Untergruppe ERI-1-homologer Proteine eine Funktion in der Biogenese der 5.8S ribosomalen RNA aufgezeigt: Katalyse des letzten Prozessierungsschritts während der Reifung des 5.8S rRNA 3‘-Endes. Diese Doppelfunktion ERI-1-homologer Proteine schlägt eine interessante Brücke zwischen evolutionär weit entfernten auf nicht-codierender RNA basierenden Mechanismen. In dieser Arbeit werden Ergebnisse präsentiert, die Charakteristika des pflanzlichen ERI-1-Homologs ERL1 in verschiedenen regulatorischen Zusammenhängen zum Gegenstand haben. ERL1 lokalisiert in Chloroplasten und zeigt keinerlei messbare Aktivität in Bezug auf die Regulierung von RNA Silencing. Im Gegensatz dazu konnte gezeigt werden, dass ERL1 eine wichtige Rolle während der Reifung der chloroplastischen 5S rRNA spielt. ERL1-supprimierende bzw. -überexprimierende transgene Pflanzen, zeigen unterschiedliche phänotypische Aberrationen. Diese beinhalten vielfarbige Blätter, reduziertes Wachstum und Fruchtbarkeit, sowie den Verlust Photosynthese-kompetenter Chloroplasten in gebleichten Sektoren. Diese Defekte werden dadurch verursacht, dass die Plastid-Entwicklung in einem frühen Stadium blockiert wird. Dies führt zu defekten Plastiden, die keine kanonischen internen Strukturen, einschließlich Grana, bilden können. Die gestörte Plastid-Entwicklung ist ein Resultat fehlerhafter Prozessierung ribosomaler RNAs und dem daraus folgenden Verlust plastidärer Transkription und Translation. Wenn ERL1 runterreguliert oder überexprimiert ist, akkumulieren 3‘-elongierte 5S rRNA-Moleküle, was Störungen in der Produktion der Ribosomen hervorruft. Die Reifung der 5S rRNA ist leit langem als Prozess bekannt, der viele aufeinander folgende endonukleolytische Spaltungen sowie exonukleolytische Rezessionen beinhaltet. Bis dato war die Gesamtheit der Exonukleasen während dieser Reifung jedoch nur lückenhaft bekannt. Die Ergebnisse dieser Arbeit zeigen, dass ERL1 eine wichtige Rolle in der Plastid-Entwicklung spielt, indem ERL1 den finalen Reifungsschritt des 5S rRNA 3‘-Endes katalysiert.
Resumo:
A physical chromosome mapping of the H1 histone and 5S and 18S ribosomal RNA (rRNA) genes was performed in interspecific hybrids of Pseudoplatystoma corruscans and P. reticulatum. The results showed that 5S rRNA clusters were located in the terminal region of 2 chromosomes. H1 histone and 18S ribosomal genes were co-localized in the terminal portion of 2 chromosomes (distinct from the chromosomes bearing 5S clusters). These results represent the first report of association between H1 histone and 18S genes in fish genomes. The chromosome clustering of ribosomal and histone genes was already reported for different organisms and suggests a possible selective pressure for the maintenance of this association. © 2012 S. Karger AG, Basel.
Resumo:
Translation initiation from the ribosomal P-site is the specialty of the initiator tRNAs (tRNA(fMet)). Presence of the three consecutive G-C base pairs (G29-C41, G30-C40 and G31-C39) in their anticodon stems, a highly conserved feature of the initiator tRNAs across the three kingdoms of life, has been implicated in their preferential binding to the P-site. How this feature is exploited by ribosomes has remained unclear. Using a genetic screen, we have isolated an Escherichia coli strain, carrying a G122D mutation in folD, which allows initiation with the tRNA(fMet) containing mutations in one, two or all the three G-C base pairs. The strain shows a severe deficiency of methionine and S-adenosylmethionine, and lacks nucleoside methylations in rRNA. Targeted mutations in the methyltransferase genes have revealed a connection between the rRNA modifications and the fundamental process of the initiator tRNA selection by the ribosome.
Resumo:
The estimation of maturity and sex of fish stocks in European waters is a requirement of the EU Data Collection Framework as part of the policy to improve fisheries management. On the other hand, research on fish biology is increasingly focused in molecular approaches, researchers needing correct identification of fish sex and reproductive stage without necessarily having in house the histological know-how necessary for the task. Taking advantage of the differential gene transcription occurring during fish sex differentiation and gametogenesis, the utility of 5S ribosomal RNA (5S rRNA) and General transcription factor IIIA (gtf3a) in the molecular identification of sex and gametogenic stage was tested in different economically-relevant fish species from the Bay of Biscay. Gonads of 9 fish species (, Atlantic, Atlantic-chub and horse mackerel, blue whiting, bogue, European anchovy, hake and pilchard and megrim), collected from local commercial fishing vessels were histologically sexed and 5S and 18S rRNA concentrations were quantified by capillary electrophoresis to calculate a 5S/18S rRNA index. Degenerate primers permitted cloning and sequencing of gtf3a fragments in 7 of the studied species. 5S rRNA and gtf3a transcript levels, together with 5S/18S rRNA index, distinguished clearly ovaries from testis in all of the studied species. The values were always higher in females than in males. 5S/18S rRNA index values in females were always highest when fish were captured in early phases of ovary development whilst, in later vitellogenic stages, the values decreased significantly. In megrim and European anchovy, where gonads in different oogenesis stages were obtained, the 5S/18S rRNA index identified clearly gametogenic stage. This approach, to the sexing and the quantitative non-subjective identification of the maturity stage of female fish, could have multiple applications in the study of fish stock dynamics, fish reproduction and fecundity and fish biology in general.
Resumo:
Based on its characteristic oral apparatus, the ciliate subclass Peritrichia has long been recognized as a monophyletic assemblage composed of the orders Mobilida and Sessilida. Following the application of molecular methods, the monophyly of Peritrichia has recently been questioned. We investigated the phylogenetic relationships of the peritrichous ciliates based on four further complete small subunit ribosomal RNA sequences of mobilids, namely Urceolaria urechi, Trichodina meretricis, Trichodina sinonovaculae, and Trichodina ruditapicis. In all phylogenetic trees, the mobilids never clustered with the sessilids, but instead formed a monophyletic assemblage related to the peniculines. By contrast, the sessilids formed a sister clade with the hymenostomes at a terminal position within the Oligohymenophorea. We therefore formally separate the mobilids from the sessilids (Peritrichia sensu stricto) and establish a new subclass, Mobilia Kahl, 1933, which contains the order Mobilida Kahl, 1933. We argue that the oral apparatus in the mobilians and sessilid peritrichs is a homoplasy, probably due to convergent evolution driven by their similar life-styles and feeding strategies. Morphologically, the mobilians are distinguished from all other oligohymenophoreans by the presence of the adhesive disc, this character being a synapomorphy for the Mobilia.
Resumo:
The ribosomal RNA molecule is an ideal model for evaluating the stability of a gene product under desiccation stress. We isolated 8 Nostoc strains that had the capacity to withstand desiccation in habitats and sequenced their 16S rRNA genes. The stabilities of 16S rRNAs secondary structures, indicated by free energy change of folding, were compared among Nostoc and other related species. The results suggested that 163 rRNA secondary structures of the desiccation-tolerant Nostoc strains were more stable than that of planktonic Nostocaceae species. The stabilizing mutations were divided into two categories: (1) those causing GC to replace other types of base pairs in stems and (2) those causing extension of stems. By mapping stabilizing mutations onto the Nostoc phylogenetic tree based on 16S rRNA gene, it was shown that most of stabilizing mutations had evolved during adaptive radiation among Nostoc spp. The evolution of 16S rRNA along the Nostoc lineage is suggested to be selectively advantageous under desiccation stress.
Resumo:
To determine the phylogenetic position of Stentor within the Class Heterotrichea, the complete small subunit rRNA genes of three Stentor species, namely Stentor polymorphus, Stentor coeruleus, and Stentor roeseli, were sequenced and used to construct phylogenetic trees using the maximum parsimony, neighbor joining, and Bayesian analysis. With all phylogenetic methods, the genus Stentor was monophyletic, with S. roeseli branching basally.
Resumo:
Chromosomal location of the major ribosomal RNA genes (rRNA) were studied in the dwarf surfclam (Mulinia lateralis, Say) using fluorescence in situ hybridization (FISH). FISH probes for the rRNA genes were made by polymerase chain reaction (PCR), labeled with digoxigenin-11-dUTP and detected with fluorescein-labeled antidigoxigenin antibodies. Mulinia lateralis had a diploid number of 38 chromosomes and all chromosomes were telocentric. FISH with the rRNA probe produced positive and consistent signals on two pairs of chromosomes: Chromosome 15 with a relative length of 4.6% and Chromosome 19, the shortest chromosome. Both loci were telomeric. The rRNA location provides the first physical landmark of the M. lateralis genome.
Resumo:
BACKGROUND: West Virginia has the worst oral health in the United States, but the reasons for this are unclear. This pilot study explored the etiology of this disparity using culture-independent analyses to identify bacterial species associated with oral disease. METHODS: Bacteria in subgingival plaque samples from twelve participants in two independent West Virginia dental-related studies were characterized using 16S rRNA gene sequencing and Human Oral Microbe Identification Microarray (HOMIM) analysis. Unifrac analysis was used to characterize phylogenetic differences between bacterial communities obtained from plaque of participants with low or high oral disease, which was further evaluated using clustering and Principal Coordinate Analysis. RESULTS: Statistically different bacterial signatures (P<0.001) were identified in subgingival plaque of individuals with low or high oral disease in West Virginia based on 16S rRNA gene sequencing. Low disease contained a high frequency of Veillonella and Streptococcus, with a moderate number of Capnocytophaga. High disease exhibited substantially increased bacterial diversity and included a large proportion of Clostridiales cluster bacteria (Selenomonas, Eubacterium, Dialister). Phylogenetic trees constructed using 16S rRNA gene sequencing revealed that Clostridiales were repeated colonizers in plaque associated with high oral disease, providing evidence that the oral environment is somehow influencing the bacterial signature linked to disease. CONCLUSIONS: Culture-independent analyses identified an atypical bacterial signature associated with high oral disease in West Virginians and provided evidence that the oral environment influenced this signature. Both findings provide insight into the etiology of the oral disparity in West Virginia.