7 resultados para 53796


Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hardly a month goes by within the scientific literature without some new material “X” being reported as a suitable material on which to grow cell type “Y”, for the potential purpose of treating disease “Z”. Thus when fibroin, a protein found in silk, was first proposed as a biomaterial for cell growth [1] it joined a long list of other materials of both natural as well as synthetic origin. Nevertheless, in the second decade of the Asian Century it is perhaps befitting that a material of so much importance to the continent’s cultural and economic history, should become the focus of cutting-edge biomedical research. Sentiments aside, however, silk fibroin possesses quite a unique combination of properties which make it a promising candidate for repairing the eye and especially for treating damage to the cornea, the transparent window at the front of the eye.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extreme isotopic variations among extraterrestrial materials provide great insights into the origin and evolution of the Solar System. In this tutorial review, we summarize how the measurement of isotope ratios can expand our knowledge of the processes that took place before and during the formation of our Solar System and its subsequent early evolution. The continuous improvement of mass spectrometers with high precision and increased spatial resolution, including secondary ion mass spectrometry (SIMS), thermal ionization mass spectrometry (TIMS) and multi collector-inductively coupled plasma-mass spectrometry (MC-ICP-MS), along with the ever growing amounts of available extraterrestrial samples have significantly increased the temporal and spatial constraints on the sequence of events that took place since and before the formation of the first Solar System condensates (i.e., Ca-Al-rich inclusions). Grains sampling distinct stellar environments with a wide range of isotopic compositions were admixed to, but possibly not fully homogenized in, the Sun's parent molecular cloud or the nascent Solar System. Before, during and after accretion of the nebula, as well as the formation and subsequent evolution of planetesimals and planets, chemical and physical fractionation processes irrevocably changed the chemical and isotopic compositions of all Solar System bodies. Since the formation of the first Solar System minerals and rocks 4.568 Gyr ago, short-and long-lived radioactive decay and cosmic ray interaction also contributed to the modification of the isotopic framework of the Solar System, and permit to trace the formation and evolution of directly accessible and inferred planetary and stellar isotopic reservoirs.

Relevância:

10.00% 10.00%

Publicador: