996 resultados para 5-HT2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: In the present study, we assessed the role of 5-hydroxytryptamine (5-HT) receptors (5-HT1A, 5-HT2 and 5-HT7) in the nucleus raphe magnus (NRM) on the ventilatory and thermoregulatory responses to hypoxia. Methods: To this end, pulmonary ventilation (V-E) and body temperature (T-b) of male Wistar rats were measured in conscious rats, before and after a 0.1 mu L microinjection of WAY-100635 (5-HT1A receptor antagonist, 3 mu g 0.1 mu L-1, 56 mM), ketanserin (5-HT2 receptor antagonist, 2 mu g 0.1 mu L-1, 36 mM) and SB269970 (5-HT7 receptor antagonist, 4 mu g 0.1 mu L-1, 103 mM) into the NRM, followed by 60 min of severe hypoxia exposure (7% O-2). Results: Intra-NMR microinjection of vehicle (control rats) or 5-HT antagonists did not affect V-E or T-b during normoxic conditions. Exposure of rats to 7% O-2 evoked a typical hypoxia-induced anapyrexia after vehicle microinjections, which was not affected by microinjection of WAY-100635, SB269970 or ketanserin. The hypoxia-induced hyperpnoea was not affected by SB269970 and ketanserin intra-NMR. However, the treatment with WAY-100635 intra-NRM attenuated the hypoxia-induced hyperpnoea. Conclusion: These data suggest that 5-HT acting on 5-HT1A receptors in the NRM increases the hypoxic ventilatory response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is widely acknowledged that the indoleamine neurotransmitter serotonin (5-HT) plays a dual role in the regulation of anxiety, a role that in part depends upon neuroanatomical locus of action. Thus, whereas stimulation of 5-HT1A or 5-HT2 receptors in the limbic forebrain (amygdala, hippocampus) enhances anxiety-like responding in rodents, activation of corresponding receptor populations in the midbrain periaqueductal grey (PAG) more often than not reduce anxiety-like behaviour. The present study specifically concerns the anxiety-modulating influence of 5-HT2 receptors within the mouse PAG. Experiment 1 assessed the effects of intra-PAG infusions of the 5-HT2B/2C receptor agonist mCPP (0, 0.03, 0.1 or 0.3 nmol/0.1 mu l) on the behaviour of mice exposed to the elevated plus-maze. As mCPP acts preferentially at 5-HT2B and 5-HT2C receptors, Experiment 2 investigated its effects in animals pretreated with ketanserin, a preferential 5-HT2A/2C receptor antagonist. In both cases, test sessions were videotaped and subsequently, scored for anxiety-like behaviour (e.g., percentage of open arm entries and percentage of open arm time) as well as general locomotor activity (closed arm entries). The results of Experiment I showed that mCPP microinfusions (0.03 and 0.1 nmol) into the PAG of mice decreased behavioural indices of anxiety without significantly altering general activity measures. In Experiment 2, the anxiolytic-like profile of intra-PAG mCPP (0.03 nmol) was substantially attenuated by intra-PAG pretreatment with an intrinsically inactive dose of the preferential 5-HT2A/2C receptor antagonist, ketanserin (10 nmol/0.1 mu l). Together, these data suggest that 5HT(2C) receptor populations within the midbrain PAG play an inhibitory role in plus-maze anxiety in mice. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigated the role of several 5-HT receptor subtypes in the lateral parabrachial nucleus (LPBN) in the control of sodium appetite (i.e. NaCl consumption). Male Holtzman rats had cannulas implanted bilaterally into the LPBN for the injection of 5-HT receptor agonists and antagonists in conjunction with either acute fluid depletion or 24-h sodium depletion. Following these treatments, access to 0.3 M NaCl was provided and the intakes of saline and water were measured for the next 2 h. Bilateral injections of the 5-HT2A receptor antagonist, ketanserin or the 5-HT2C receptor antagonist, mianserin into the LPBN increased 0.3 M NaCl intake without affecting water intake induced by acute fluid-depletion. Bilateral injections of the 5-HT2B receptor agonist, BW723C86 hydrochloride, had no effect on 0.3 M NaCl or water intake under these conditions. Treatment of the LPBN with the 5-HT2B/2C receptor agonist, 2-(2-methyl-4-clorophenoxy) propanoic acid (mCPP) caused dose-related reductions in 0.3 M NaCl intake after 24 h sodium depletion. The effects of mCPP were prevented by pretreating the LPBN with the 5-HT2B/2C receptor antagonist, SDZSER082. Activation of 5-HT3 receptors by the receptor agonist, 1-phenylbiguanicle (PBG) caused dose-related increases in 0.3 M NaCl intake. Pretreatment of the LPBN with the 5-HT3 receptor antagonist, 1-methyl-N-[8-methyl-8-azabicyclo (3.2.1)-oct-3-yl]-1H-indazole-3-carboxamide (LY-278,584) abolished the effects of PBG, but LY-278,584 had no effects on sodium or water intake when injected by itself. PBG injected into the LPBN did not alter intake of palatable 0.06 M sucrose in fluid replete rats. The results suggest that activation of the 5-HT2A and 5-HT2C receptor subtypes inhibits sodium ingestion. In contrast, activation of the 5-HT3 receptor subtype increases sodium ingestion. Therefore, multiple serotonergic receptor subtypes in the LPBN are implicated in the control of sodium intake, sometimes by mediating opposite effects of 5-HT. The results provide new information concerning the control of sodium intake by LPBN mechanisms. (C) 2007 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: In the present study, we assessed the role of 5-hydroxytryptamine (5-HT) receptors (5-HT1A, 5-HT2 and 5-HT7) in the nucleus raphe magnus (NRM) on the ventilatory and thermoregulatory responses to hypoxia.Methods: To this end, pulmonary ventilation (V-E) and body temperature (T-b) of male Wistar rats were measured in conscious rats, before and after a 0.1 mu L microinjection of WAY-100635 (5-HT1A receptor antagonist, 3 mu g 0.1 mu L-1, 56 mM), ketanserin (5-HT2 receptor antagonist, 2 mu g 0.1 mu L-1, 36 mM) and SB269970 (5-HT7 receptor antagonist, 4 mu g 0.1 mu L-1, 103 mM) into the NRM, followed by 60 min of severe hypoxia exposure (7% O-2).Results: Intra-NMR microinjection of vehicle (control rats) or 5-HT antagonists did not affect V-E or T-b during normoxic conditions. Exposure of rats to 7% O-2 evoked a typical hypoxia-induced anapyrexia after vehicle microinjections, which was not affected by microinjection of WAY-100635, SB269970 or ketanserin. The hypoxia-induced hyperpnoea was not affected by SB269970 and ketanserin intra-NMR. However, the treatment with WAY-100635 intra-NRM attenuated the hypoxia-induced hyperpnoea.Conclusion: These data suggest that 5-HT acting on 5-HT1A receptors in the NRM increases the hypoxic ventilatory response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serotonin, first described as a neurotransmitter in invertebrates, has been investigated mostly for its functions in the mature central nervous system of higher vertebrates. Serotonin receptor diversity has been described in the mammalian brain and in insects. We report the isolation of a cDNA coding for a Drosophila melanogaster serotonin receptor that displays a sequence, a gene organization, and pharmacological properties typical of the mammalian 5-HT2 serotonin receptor subtype. Its mRNA can be detected in the adult fly; moreover, a high level of expression occurs at 3 hr of Drosophila embryogenesis. This early embryonic expression is surprisingly organized in a seven-stripe pattern that appears at the cellular blastoderm stage. In addition, this pattern is in phase with that of the even-parasegment-expressed pair-rule gene fushi-tarazu and is similarly modified by mutations affecting segmentation genes. Simultaneously with this pair-rule expression, the complete machinery of serotonin synthesis is present and leads to a peak of ligand concomitant with a peak of 5-HT2-specific receptor sites in blastoderm embryos.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Activation of 5-hydroxytryptamine (5-HT) 5-HT1A, 5-HT2C, 5-HT3, and 5-HT7 receptors modulates the excitability of cardiac vagal motoneurones, but the precise role of 5-HT2A/2B receptors in these phenomena is unclear. We report here the effects of intracisternal (ic) administration of selective 5-HT2A/2B antagonists on the vagal bradycardia elicited by activation of the von Bezold-Jarisch reflex with phenylbiguanide. The experiments were performed on urethane-anesthetized male Wistar rats (250-270 g, N = 7-9 per group). The animals were placed in a stereotaxic frame and their atlanto-occipital membrane was exposed to allow ic injections. The rats received atenolol (1 mg/kg, iv) to block the sympathetic component of the reflex bradycardia; 20-min later, the cardiopulmonary reflex was induced with phenylbiguanide (15 µg/kg, iv) injected at 15-min intervals until 3 similar bradycardias were obtained. Ten minutes after the last pre-drug bradycardia, R-96544 (a 5-HT2A antagonist; 0.1 µmol/kg), SB-204741 (a 5-HT2B antagonist; 0.1 µmol/kg) or vehicle was injected ic. The subsequent iv injections of phenylbiguanide were administered 5, 20, 35, and 50 min after the ic injection. The selective 5-HT2A receptor antagonism attenuated the vagal bradycardia and hypotension, with maximal effect at 35 min after the antagonist (pre-drug = -200 ± 11 bpm and -42 ± 3 mmHg; at 35 min = -84 ± 10 bpm and -33 ± 2 mmHg; P < 0.05). Neither the 5-HT2B receptor antagonists nor the vehicle changed the reflex. These data suggest that central 5-HT2A receptors modulate the central pathways of the parasympathetic component of the von Bezold-Jarisch reflex.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present study we compared the affinity of various drugs for the high affinity "agonist-preferring" binding site of human recombinant 5-HT2A, 5-HT2B and 5-HT2C receptors stably expressed in monoclonal mammalian cell lines. To ensure that the "agonist-preferring" conformation of the receptor was preferentially labelled in competition binding experiments, saturation analysis was conducted using antagonist and agonist radiolabels at each receptor. Antagonist radiolabels ([H-3]-ketanserin for 5-HT2A receptor and [H-3]-mesulergine for 5-HT2B and 5-HT2C receptor) bound to a larger population of receptors in each preparation than the corresponding agonist radiolabel ([I-125]-DOI for 5-HT2A receptor binding and [H-3]-5-HT for 5-HT2B and 5-HT2C receptor binding). Competition experiments were subsequently conducted against appropriate concentrations of the agonist radiolabels bound to the "agonist-preferring" subset of receptors in each preparation. These studies confirmed that there are a number of highly selective antagonists available to investigate 5-HT2 receptor subtype function (for example, MDL 100907, RS-127445 and RS-102221 for 5-HT2A, 5-HT2B and 5-HT2C receptors respectively). There remains, however, a lack of highly selective agonists. (-)DOI is potent and moderately selective for 5-HT2A receptors, BW723C86 has poor selectivity for human 5-HT2B receptors, while Org 37684 and VER-3323 display some selectivity for the 5-HT2C receptor. We report for the first time in a single study, the selectivity of numerous serotonergic drugs for 5-HT2 receptors from the same species, in mammalian cell lines and using, exclusively, agonist radiolabels. The results indicate the importance of defining the selectivity of pharmacological tools, which may have been over-estimated in the past, and highlights the need to find more selective agonists to investigate 5-HT2 receptor pharmacology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several findings have pointed to the role of the dorsal periaqueductal gray (dPAG) serotonin 5-HT1A and 5-HT2(A-C) receptor subtypes in the modulation of defensive behavior in animals exposed to the elevated plus-maze (EPM). Besides displaying anxiety-like behavior, rodents also exhibit antinociception in the EPM. This study investigated the effects of intra-dPAG injections of 5-HT1A and 5-HT2B/2C receptor ligands on EPM-induced antinociception in mice. Male Swiss mice received 0.1 mu l intra-dPAG injections of vehicle, 5.6 and 10 nmol of 8-OHDPAT, a 5-HT1A receptor agonist (Experiment 1), or 0.01, 0.03 and 0.1 nmol of mCPP, a 5-HT2B/2C receptor agonist (Experiment 2). Five minutes later, each mouse received an intraperitoneal injection of 0.6% acetic acid (0.1 ml/10 g body weight; nociceptive stimulus) and was individually confined in the open (OA) or enclosed (EA) arms of the EPM for 5 min, during which the number of abdominal writhes induced by the acetic acid was recorded. While intra-dPAG injection of 8-OHDPAT did not change open-arm antinociception (OAR). mCPP (0.01 nmol) enhanced it. Combined injections of ketanserin (10 nmol/0.1 mu l), a 5-HT2A/2C receptor antagonist, and 0.01 nmol of mCPP (Experiment 3), selectively and completely blocked the OAR enhancement induced by mCPP. Although intra-dPAG injection of mCPP (0.01 nmol) also produced antinociception in EA-confined mice (Experiment 2), this effect was not confirmed in Experiment 3. Moreover, no other compound changed the nociceptive response in EA-confined animals. These results suggest that the 5-HT2C receptors located within the PAG play a role in this type of environmentally induced pain inhibition in mice. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Amide derivatives of fatty acids were recently isolated from cerebrospinal fluid of sleep-deprived animals and found to induce sleep in rats. To determine which brain receptors might be sensitive to these novel neuromodulators, we tested them on a range of receptors expressed in Xenopus oocytes. cis-9,10-Octadecenamide (ODA) markedly potentiated the action of 5-hydroxytryptamine (5-HT) on 5-HT2A and 5-HT2C receptors, but this action was not shared by related compounds such as oleic acid and trans-9,10-octacenamide. ODA was active at concentrations as low as 1 nM. The saturated analog, octadecanamide, inhibited rather than potentiated 5-HT2C responses. ODA had either no effect or only weak effects on other receptors, including muscarinic cholinergic, metabotropic glutamate, GABA(A), N-methyl-D-asparate, or alpha-amino-3-hydroxy-5-methyl-4-isoxozolepropionic acid receptors. Modulation of 5-HT2 receptors by ODA and related lipids may represent a novel mechanism for regulation of receptors that activate G proteins and thereby play a role in alertness, sleep, and mood as well as disturbances of these states.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Drugs acting at 5-HT receptors were evaluated on three animal models of anxiety. On the elevated X-maze test the majority of 5-HT1 agonists were found to be anxiogenic. However, ipsapirone was anxiolytic and buspirone and gepirone were inactive. The 5-HT2 agonist DOI and the 5-HT2 antagonist ritanserin were anxiolytic while ICI 169,369, a 5-HT2 antagonist was inactive. All 5-HT3 antagonists tested were inactive in this test, while the indirect serotomimetics zimeldine and fenfluramine were anxiogenic. Neither beta-adrenoceptor agonists nor antagonists had reproducible effects on anxiety in this model. Combined beta-1/beta-2 adrenoceptor antagonists reversed the anxiogenic effects of 8-OH-DPAT while selective beta-1 or beta-2 antagonists did not. On the social interaction model the 5-HT1 agonists 8-OH-DPAT, RU 24969 and 5-MeODMT were anxiogenic and ipsapirone was anxiolytic. The 5-HT2 agonist DOI and the beta-adrenoceptor- and 5-HT- antagonist pindolol were anxiolytic, while the 5-HT2 and 5-HT3 antagonists were inactive. In the marble burying test, the 5-HT upake inhibitors zimeldine, fluvoxamine, indalpine and citalopram, the 5-HT1B/5-HT1C agonists mCPP and TFMPP and the 5-HT2/5-HT1C agonist DOI reduced marble burying without affecting locomotor activity. 5-HT1A agonists and the 5-HT2 and 5-HT3 antagonists were without effect. Lesions of the dorsal raphe nucleus reversed the anxiogenic effects of 8-OH-DPAT in the X-maze model. The implication of these results for the understanding of the pharmacology of 5-HT in anxiety is discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The modulation of 5-hydroxytryptamine (5-HT)-related head-twitchbehaviour by antimigraine drugs and migraine triggers was examined inmice. The antimigraine drugs examined produced either inhibition or noeffect on 5-HT-related head-twitching. On the basis of these resultsit is suggested that 5-HT-related head-twitching is unlikely to beuseful in the preclinical screening and discovery of systemically-activeantimigraine agents. The migraine triggers examined, tyramineand beta-PEA initially produced a repeatable complex time-relatedeffect on 5-HT-related head-twitching, with both inhibition andpotentiation of this behaviour being observed, however, when furtherexamination of the effect of the migraine triggers on 5-HT-relatedhead-twitching was attempted some time later the effects seeninitially were no longer produced. The effect of (±)-1-<2, 5-dimethoxy-4-iodophenyl)-2-aminopropane,((±)DOl), on on-going behaviour of mice and rats was examined. Shakingbehaviour was observed in both species. In mice, excessive scratchingbehaviour was also present. (±)DOl-induced scratching and shakingbehaviour were found to be differentially modulated by noradrenergicand serotonergic agents, however, the fact that both behaviours wereblocked by ritanserin (5-HT2/5-HT1c receptor antagonist) and inhibitedby FLA-63 (a dopamine-beta-oxidase inhibitor which depletesnoradrenaline), suggests the pathways mediating these behaviours mustbe convergent in some manner, and that both behaviours require intact5-HT receptors, probably 5-HT2 receptors, for their production. Ingeneral, the behavioural profile of (±)DOI was as expected for anagent which exhibits high affinity binding to 5-HT2/5-HT1c receptors.Little sign of the 5-HTl-related '5-HT syndrome' was seen in eithermice or rats. The effect of a variety of noradrenergic agents on head-twitchinginduced by a variety of shake-inducing agents was examined. A patternof modulatory effect was seen whereby the modulatory effect of thenoradrenergic agents on 5-hydroxytryptophan <5-HTP) (and in some cases, 5-methoxy-N,N-dimethyltryptamine (5-MeODMT)) was found to be the opposite of that observed with quipazine and (±)DOI. The relationship between these effects, and their implications for understanding the pharmacology of centrally acting drugs is discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Extracellular single-unit recordings in mouse brain slices were used to determine the effect of exogenously applied 5-HT on STN neurones. Recordings were made from 74 STN cells which fired action potentials at a regular rate of 7.19 ± 0.5 Hz. In 61 cells (82%), 5-HT application increased STN neurone firing rate (10 μM, 180 ± 16.8%, n = 35) with an estimated EC 50 of 5.4 μM. The non-specific 5-HT2 receptor agonist α-methyl 5-HT (1-10 μM) mimicked 5-HT induced excitations (15 cells). These excitations were significantly reduced by pre-perfusion with the specific 5-HT2C receptor antagonist RS102221 (500 nM, 9 cells) and the 5HT4 antagonist GR113808 (500 nM, 7 cells). In 6 cells (8%) 5-HT induced biphasic responses where excitation was followed by inhibition, while in 7 cells (9%) inhibition of firing rate was observed alone. Inhibitory responses were reduced by the 5-HT1A antagonist WAY100135 (1 μM, 4 cells). No inhibitory responses were observed following α-methyl 5-HT applications. Both the excitations and inhibitions were unaffected by picrotoxin (50 μM, n = 5) and CNQX (10 μM, n = 5) indicative of direct postsynaptic effects. Thus, in STN neurones, 5-HT elicits two distinct effects, at times on the same neurone, the first being an excitation which is mediated by 5-HT 2C and 5-HT4 receptors and the second an inhibition which is mediated by 5-HT1A receptors. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intermittent claudication (IC) is leg muscle pain, cramping and fatigue brought on by exercise and is the primary symptom of peripheral arterial disease. The goals of pharmacotherapy for IC are to increase the walking capacity/quality of life and to decrease rates of amputation. In 1988, pentoxifylline was the only drug that had reasonable supportive clinical trial evidence for being beneficial in IC. Since then a number of drugs have shown benefit or potential in IC. Cilostazol, a specific inhibitor of phosphodiesterase 3 and activator of lipoprotein lipase, clearly increases pain-free and absolute walking distances in claudicants. However, cilostazol does cause minor side effects including headache, diarrhoea, loose stools and flatulence. Naftidrofuryl, a serotonin (5-HT2) receptor antagonist and antiplatelet drug, is beneficial in claudicants. Inhibitors of platelet aggregation (including nitric oxide from L-arginine or glyceryl trinitrate) and anticoagulants (low molecular weight heparin, defibrotide) probably have both short and long-term benefits in IC. In addition, intravenous infusions of prostaglandins (PGs) PGE1 and PGI2 have an established role in severe peripheral arterial disease and the recent introduction of longer lasting and/or oral forms of the PGs makes them more likely to be useful in the IC associated with less severe forms of the disease. There are some exciting new approaches to the treatment of IC, including propionyl-L-carnitine and basic fibroblast growth factor (bFGF).