881 resultados para 4D simulation
Resumo:
Les modèles de réflexion complexes, avec leurs nombreux paramètres dont certains restent non intuitifs, sont difficiles à contrôler pour obtenir une apparence désirée. De plus, même si un artiste peut plus aisément comprendre la forme de la micro-géométrie d'une surface, sa modélisation en 3D et sa simulation en 4D demeurent extrêmement fastidieuses et coûteuses en mémoire. Nous proposons une solution intermédiaire, où l'artiste représente en 2D une coupe dans un matériau, en dessinant une micro-géométrie de surface en multi-couches. Une simulation efficace par lancer de rayons en seulement 2D capture les distributions de lumière affectées par les micro-géométries. La déviation hors-plan est calculée automatiquement de façon probabiliste en fonction de la normale au point d'intersection et de la direction du rayon incident. Il en résulte des BRDFs isotropes complètes et complexes, simulées à des vitesses interactives, et permettant ainsi une édition interactive de l'apparence de réflectances riches et variées.
Resumo:
The knowledge of the atomic structure of clusters composed by few atoms is a basic prerequisite to obtain insights into the mechanisms that determine their chemical and physical properties as a function of diameter, shape, surface termination, as well as to understand the mechanism of bulk formation. Due to the wide use of metal systems in our modern life, the accurate determination of the properties of 3d, 4d, and 5d metal clusters poses a huge problem for nanoscience. In this work, we report a density functional theory study of the atomic structure, binding energies, effective coordination numbers, average bond lengths, and magnetic properties of the 3d, 4d, and 5d metal (30 elements) clusters containing 13 atoms, M(13). First, a set of lowest-energy local minimum structures (as supported by vibrational analysis) were obtained by combining high-temperature first- principles molecular-dynamics simulation, structure crossover, and the selection of five well-known M(13) structures. Several new lower energy configurations were identified, e. g., Pd(13), W(13), Pt(13), etc., and previous known structures were confirmed by our calculations. Furthermore, the following trends were identified: (i) compact icosahedral-like forms at the beginning of each metal series, more opened structures such as hexagonal bilayerlike and double simple-cubic layers at the middle of each metal series, and structures with an increasing effective coordination number occur for large d states occupation. (ii) For Au(13), we found that spin-orbit coupling favors the three-dimensional (3D) structures, i.e., a 3D structure is about 0.10 eV lower in energy than the lowest energy known two-dimensional configuration. (iii) The magnetic exchange interactions play an important role for particular systems such as Fe, Cr, and Mn. (iv) The analysis of the binding energy and average bond lengths show a paraboliclike shape as a function of the occupation of the d states and hence, most of the properties can be explained by the chemistry picture of occupation of the bonding and antibonding states.
Resumo:
Visualization is a relatively recent tool available to engineers for enhancing transportation project design through improved communication, decision making, and stakeholder feedback. Current visualization techniques include image composites, video composites, 2D drawings, drive-through or fly-through animations, 3D rendering models, virtual reality, and 4D CAD. These methods are used mainly to communicate within the design and construction team and between the team and external stakeholders. Use of visualization improves understanding of design intent and project concepts and facilitates effective decision making. However, visualization tools are typically used for presentation only in large-scale urban projects. Visualization is not widely accepted due to a lack of demonstrated engineering benefits for typical agency projects, such as small- and medium-sized projects, rural projects, and projects where external stakeholder communication is not a major issue. Furthermore, there is a perceived high cost of investment of both financial and human capital in adopting visualization tools. The most advanced visualization technique of virtual reality has only been used in academic research settings, and 4D CAD has been used on a very limited basis for highly complicated specialty projects. However, there are a number of less intensive visualization methods available which may provide some benefit to many agency projects. In this paper, we present the results of a feasibility study examining the use of visualization and simulation applications for improving highway planning, design, construction, and safety and mobility.
Resumo:
Visualization is a relatively recent tool available to engineers for enhancing transportation project design through improved communication, decision making, and stakeholder feedback. Current visualization techniques include image composites, video composites, 2D drawings, drive-through or fly-through animations, 3D rendering models, virtual reality, and 4D CAD. These methods are used mainly to communicate within the design and construction team and between the team and external stakeholders. Use of visualization improves understanding of design intent and project concepts and facilitates effective decision making. However, visualization tools are typically used for presentation only in large-scale urban projects. Visualization is not widely accepted due to a lack of demonstrated engineering benefits for typical agency projects, such as small- and medium-sized projects, rural projects, and projects where external stakeholder communication is not a major issue. Furthermore, there is a perceived high cost of investment of both financial and human capital in adopting visualization tools. The most advanced visualization technique of virtual reality has only been used in academic research settings, and 4D CAD has been used on a very limited basis for highly complicated specialty projects. However, there are a number of less intensive visualization methods available which may provide some benefit to many agency projects. In this paper, we present the results of a feasibility study examining the use of visualization and simulation applications for improving highway planning, design, construction, and safety and mobility.
Resumo:
Morphogenesis emerges from complex multiscale interactions between genetic and mechanical processes. To understand these processes, the evolution of cell shape, proliferation and gene expression must be quantified. This quantification is usually performed either in full 3D, which is computationally expensive and technically challenging, or on 2D planar projections, which introduces geometrical artifacts on highly curved organs. Here we present MorphoGraphX ( www.MorphoGraphX.org), a software that bridges this gap by working directly with curved surface images extracted from 3D data. In addition to traditional 3D image analysis, we have developed algorithms to operate on curved surfaces, such as cell segmentation, lineage tracking and fluorescence signal quantification. The software's modular design makes it easy to include existing libraries, or to implement new algorithms. Cell geometries extracted with MorphoGraphX can be exported and used as templates for simulation models, providing a powerful platform to investigate the interactions between shape, genes and growth.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Students in the architecture, engineering, and construction disciplines are often challenged with visualizing and understanding the complex spatial and temporal relationships involved in designing and constructing three-dimensional (3D) structures. An evolving body of research traces the use of educational computer simulations to enhance student learning experiences through testing real-world scenarios and the development of student decision-making skills. Ongoing research at Pennsylvania State University aims to improve engineering education in construction through interactive construction project learning applications in an immersive virtual reality environment. This paper describes the first- and second-generation development of the Virtual Construction Simulator (VCS), a tool that enables students to simultaneously create and review construction schedules through 3D model interaction. The educational value and utility of VCS was assessed through surveys, focus group interviews, and a student exercise conducted in a construction management class. Results revealed VCS is a valuable and effective four-dimensional (4D) model creation and schedule review application that fosters collaborative work and greater student task focus. This paper concludes with a discussion of the findings and the future development steps of the VCS educational simulation
Resumo:
Morphogenesis emerges from complex multiscale interactions between genetic and mechanical processes. To understand these processes, the evolution of cell shape, proliferation and gene expression must be quantified. This quantification is usually performed either in full 3D, which is computationally expensive and technically challenging, or on 2D planar projections, which introduces geometrical artifacts on highly curved organs. Here we present MorphoGraphX (www.MorphoGraphX.org), a software that bridges this gap by working directly with curved surface images extracted from 3D data. In addition to traditional 3D image analysis, we have developed algorithms to operate on curved surfaces, such as cell segmentation, lineage tracking and fluorescence signal quantification. The software’s modular design makes it easy to include existing libraries, or to implement new algorithms. Cell geometries extracted with MorphoGraphX can be exported and used as templates for simulation models, providing a powerful platform to investigate the interactions between shape, genes and growth.DOI: http://dx.doi.org/10.7554/eLife.05864.001Author keywordsResearch organism
Resumo:
New concepts in air navigation have been introduced recently. Among others, are the concepts of trajectory optimization, 4D trajectories, RBT (Reference Business Trajectory), TBO (trajectory based operations), CDA (Continuous Descent Approach) and ACDA (Advanced CDA), conflict resolution, arrival time (AMAN), introduction of new aircraft (UAVs, UASs) in air space, etc. Although some of these concepts are new, the future Air Traffic Management will maintain the four ATM key performance areas such as Safety, Capacity, Efficiency, and Environmental impact. So much, the performance of the ATM system is directly related to the accuracy with which the future evolution of the traffic can be predicted. In this sense, future air traffic management will require a variety of support tools to provide suitable help to users and engineers involved in the air space management. Most of these tools are based on an appropriate trajectory prediction module as main component. Therefore, the purposes of these tools are related with testing and evaluation of any air navigation concept before they become fully operative. The aim of this paper is to provide an overview to the design of a software tool useful to estimate aircraft trajectories adapted to air navigation concepts. Other usage of the tool, like controller design, vertical navigation assessment, procedures validation and hardware and software in the loop are available in the software tool. The paper will show the process followed to design the tool, the software modules needed to perform accurately and the process followed to validate the output data.
Resumo:
Le cancer pulmonaire est la principale cause de décès parmi tous les cancers au Canada. Le pronostic est généralement faible, de l'ordre de 15% de taux de survie après 5 ans. Les déplacements internes des structures anatomiques apportent une incertitude sur la précision des traitements en radio-oncologie, ce qui diminue leur efficacité. Dans cette optique, certaines techniques comme la radio-chirurgie et la radiothérapie par modulation de l'intensité (IMRT) visent à améliorer les résultats cliniques en ciblant davantage la tumeur. Ceci permet d'augmenter la dose reçue par les tissus cancéreux et de réduire celle administrée aux tissus sains avoisinants. Ce projet vise à mieux évaluer la dose réelle reçue pendant un traitement considérant une anatomie en mouvement. Pour ce faire, des plans de CyberKnife et d'IMRT sont recalculés en utilisant un algorithme Monte Carlo 4D de transport de particules qui permet d'effectuer de l'accumulation de dose dans une géométrie déformable. Un environnement de simulation a été développé afin de modéliser ces deux modalités pour comparer les distributions de doses standard et 4D. Les déformations dans le patient sont obtenues en utilisant un algorithme de recalage déformable d'image (DIR) entre les différentes phases respiratoire générées par le scan CT 4D. Ceci permet de conserver une correspondance de voxels à voxels entre la géométrie de référence et celles déformées. La DIR est calculée en utilisant la suite ANTs («Advanced Normalization Tools») et est basée sur des difféomorphismes. Une version modifiée de DOSXYZnrc de la suite EGSnrc, defDOSXYZnrc, est utilisée pour le transport de particule en 4D. Les résultats sont comparés à une planification standard afin de valider le modèle actuel qui constitue une approximation par rapport à une vraie accumulation de dose en 4D.
Resumo:
Le cancer pulmonaire est la principale cause de décès parmi tous les cancers au Canada. Le pronostic est généralement faible, de l'ordre de 15% de taux de survie après 5 ans. Les déplacements internes des structures anatomiques apportent une incertitude sur la précision des traitements en radio-oncologie, ce qui diminue leur efficacité. Dans cette optique, certaines techniques comme la radio-chirurgie et la radiothérapie par modulation de l'intensité (IMRT) visent à améliorer les résultats cliniques en ciblant davantage la tumeur. Ceci permet d'augmenter la dose reçue par les tissus cancéreux et de réduire celle administrée aux tissus sains avoisinants. Ce projet vise à mieux évaluer la dose réelle reçue pendant un traitement considérant une anatomie en mouvement. Pour ce faire, des plans de CyberKnife et d'IMRT sont recalculés en utilisant un algorithme Monte Carlo 4D de transport de particules qui permet d'effectuer de l'accumulation de dose dans une géométrie déformable. Un environnement de simulation a été développé afin de modéliser ces deux modalités pour comparer les distributions de doses standard et 4D. Les déformations dans le patient sont obtenues en utilisant un algorithme de recalage déformable d'image (DIR) entre les différentes phases respiratoire générées par le scan CT 4D. Ceci permet de conserver une correspondance de voxels à voxels entre la géométrie de référence et celles déformées. La DIR est calculée en utilisant la suite ANTs («Advanced Normalization Tools») et est basée sur des difféomorphismes. Une version modifiée de DOSXYZnrc de la suite EGSnrc, defDOSXYZnrc, est utilisée pour le transport de particule en 4D. Les résultats sont comparés à une planification standard afin de valider le modèle actuel qui constitue une approximation par rapport à une vraie accumulation de dose en 4D.
Resumo:
In this work, the energy response functions of a CdTe detector were obtained by Monte Carlo (MC) simulation in the energy range from 5 to 160keV, using the PENELOPE code. In the response calculations the carrier transport features and the detector resolution were included. The computed energy response function was validated through comparison with experimental results obtained with (241)Am and (152)Eu sources. In order to investigate the influence of the correction by the detector response at diagnostic energy range, x-ray spectra were measured using a CdTe detector (model XR-100T, Amptek), and then corrected by the energy response of the detector using the stripping procedure. Results showed that the CdTe exhibits good energy response at low energies (below 40keV), showing only small distortions on the measured spectra. For energies below about 80keV, the contribution of the escape of Cd- and Te-K x-rays produce significant distortions on the measured x-ray spectra. For higher energies, the most important correction is the detector efficiency and the carrier trapping effects. The results showed that, after correction by the energy response, the measured spectra are in good agreement with those provided by a theoretical model of the literature. Finally, our results showed that the detailed knowledge of the response function and a proper correction procedure are fundamental for achieving more accurate spectra from which quality parameters (i.e., half-value layer and homogeneity coefficient) can be determined.
Resumo:
The purpose of this study was to evaluate the influence of intrapulpal pressure simulation on the bonding effectiveness of etch & rinse and self-etch adhesives to dentin. Eighty sound human molars were distributed into eight groups, according to the permeability level of each sample, measured by an apparatus to assess hydraulic conductance (Lp). Thus, a similar mean permeability was achieved in each group. Three etch & rinse adhesives (Prime & Bond NT - PB, Single Bond -SB, and Excite - EX) and one self-etch system (Clearfil SE Bond - SE) were employed, varying the presence or absence of an intrapulpal pressure (IPP) simulation of 15 cmH2O. After adhesive and restorative procedures were carried out, the samples were stored in distilled water for 24 hours at 37°C, and taken for tensile bond strength (TBS) testing. Fracture analysis was performed using a light microscope at 40 X magnification. The data, obtained in MPa, were then submitted to the Kruskal-Wallis test ( a = 0.05). The results revealed that the TBS of SB and EX was significantly reduced under IPP simulation, differing from the TBS of PB and SE. Moreover, SE obtained the highest bond strength values in the presence of IPP. It could be concluded that IPP simulation can influence the bond strength of certain adhesive systems to dentin and should be considered when in vitro studies are conducted.
Resumo:
Abstract This paper aims at assessing the performance of a program of thermal simulation (Arquitrop) in different households in the city of Sao Paulo, Brazil. The households were selected for the Wheezing Project which followed up children under 2 years old to monitor the occurrence of respiratory diseases. The results show that in all three study households there is a good approximation between the observed and the simulated indoor temperatures. It was also observed a fairly consistent and realistic behavior between the simulated indoor and the outdoor temperatures, describing the Arquitrop model as an efficient estimator and good representative of the thermal behavior of households in the city of Sao Paulo. The worst simulation is linked to the poorest type of construction. This may be explained by the bad quality of the construction, which the Architrop could not simulate adequately