1000 resultados para 4BC14-2
Resumo:
Approaches to quantify the organic carbon accumulation on a global scale generally do not consider the small-scale variability of sedimentary and oceanographic boundary conditions along continental margins. In this study, we present a new approach to regionalize the total organic carbon (TOC) content in surface sediments (<5 cm sediment depth). It is based on a compilation of more than 5500 single measurements from various sources. Global TOC distribution was determined by the application of a combined qualitative and quantitative-geostatistical method. Overall, 33 benthic TOC-based provinces were defined and used to process the global distribution pattern of the TOC content in surface sediments in a 1°x1° grid resolution. Regional dependencies of data points within each single province are expressed by modeled semi-variograms. Measured and estimated TOC values show good correlation, emphasizing the reasonable applicability of the method. The accumulation of organic carbon in marine surface sediments is a key parameter in the control of mineralization processes and the material exchange between the sediment and the ocean water. Our approach will help to improve global budgets of nutrient and carbon cycles.
Resumo:
In this study we present a global distribution pattern and budget of the minimum flux of particulate organic carbon to the sea floor (J POC alpha). The estimations are based on regionally specific correlations between the diffusive oxygen flux across the sediment-water interface, the total organic carbon content in surface sediments, and the oxygen concentration in bottom waters. For this, we modified the principal equation of Cai and Reimers [1995] as a basic monod reaction rate, applied within 11 regions where in situ measurements of diffusive oxygen uptake exist. By application of the resulting transfer functions to other regions with similar sedimentary conditions and areal interpolation, we calculated a minimum global budget of particulate organic carbon that actually reaches the sea floor of ~0.5 GtC yr**-1 (>1000 m water depth (wd)), whereas approximately 0.002-0.12 GtC yr**-1 is buried in the sediments (0.01-0.4% of surface primary production). Despite the fact that our global budget is in good agreement with previous studies, we found conspicuous differences among the distribution patterns of primary production, calculations based on particle trap collections of the POC flux, and J POC alpha of this study. These deviations, especially located at the southeastern and southwestern Atlantic Ocean, the Greenland and Norwegian Sea and the entire equatorial Pacific Ocean, strongly indicate a considerable influence of lateral particle transport on the vertical link between surface waters and underlying sediments. This observation is supported by sediment trap data. Furthermore, local differences in the availability and quality of the organic matter as well as different transport mechanisms through the water column are discussed.
Resumo:
Distributions of pore water O2, NO-2, NO-3, NH+4, Si(OH)4, PO[3-]4, Mn[2+], F-, and T.A. were determined at 15 stations in the eastern equatorial Atlantic. While overall profile characteristics are consistent with previous models of organic matter diagenesis, profile shapes suggest that a deep reaction layer, rich in organic C, is also present at many sites. While it is unlikely that the oxidation of organic C in this layer has had a major effect on the ocean C cycle, pore water profile shapes are significantly altered. Despite exposure to seawater SO[2-]4 concentrations for > 1000 years, decomposition of the organic matter in the layer appears to be restricted to oxic and suboxic processes. These results suggest major differences in organic carbon decomposition and preservation under oxic/suboxic and anoxic conditions. Present-day benthic fluxes are largest adjacent to the eastern boundary coastal upwelling region and similar in magnitude to values reported for the eastern Pacific. Preliminary estimates suggest that the benthic respiration in the eastern 1/3 of the North Atlantic south of 20°N may alone account for >20% of the total deep North Atlantic respiration. Combining these results with estimates of organic C burial and deep water-column decomposition suggests that this region is a major location of organic C input into the deep sea.