998 resultados para 430207 Archaeological Science
Resumo:
Vivianite is a bluish mineral sometimes encountered in archaeological deposits. It is notable for its tendency to change color from white or grayish to blue on exposure to air. Vivianite requires specific conditions for its formation-sources of iron, phosphate, and water, as well as low levels of oxygen and sulfide. Microbial activity is also thought to play a part in vivianite formation. The majority of archaeological texts do not discuss vivianite to any great degree, preventing a more detailed interpretation of site conditions and features. Vivianite was found in 25 exhumed burials from the North Brisbane Burial Ground, Queensland, Australia. Research indicated that bone or tissue samples for DNA analysis are best taken from areas distant from vivianite encrustations and that presence of vivianite has implications for artifact conservation. Vivianite at the North Brisbane Burial Grounds helped protect some skeletal and dental elements, preserved the impressions of metal coffin lacing, and also corroborated the oral history of temporary waterlogging and acted as a measure of pollution levels across the site. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Microscopic identification of organic residues in situ on the surface of archaeological artefacts is an established procedure. Where soil components morphologically similar to use-residue types exist within the soil, however, there remains the possibility that these components may be misidentified as authentic residues. The present study investigates common soil components known as conidia, fungal spores which may be mistaken for starch grains. Conidia may exhibit the rotating extinction cross under cross-polarised light commonly diagnostic of starch, and may be morphologically indistinguishable from small starch grains, particularly at the limits of microscope resolution. Conidia were observed on stone and ceramic archaeological artefacts from Honduras, Palau and New Caledonia, as well as experimental artefacts from Papua New Guinea. The findings act as a caution that in situ analysis of residues, and especially of those less than 5 mu m in size, may be subject to misidentification. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The discovery and interpretation of microscopic residues on stone artefacts is an expanding front within archaeological science, allowing reconstructions of the past use of specific tools. With notable exceptions, however, the field has seen little theoretical development, relying largely on a rationale in which either individual findings are widely generalized or the age of the site determines the importance of the results. Here an approach to residue interpretation is proposed that draws on notions of narrative, scale, action and agency as one means of expanding the theoretical scope and application of residue studies. It is suggested that the individual resonance of the findings of residue analyses with people in the present day can be used to provide a more nuanced understanding of past actions, which in turn allows both better integration and communication of those findings within and outside the archaeological comm unity, and begins to overcome the problems associated with the typically small sample sizes analysed in stone-tool residue studies.
Resumo:
The conference aimed to provide a forum for the exploration of barriers, borders and boundaries in Australian archaeological methods and practice, frameworks of interpretation and epistemological structures. Sessions were designed to have broad appeal to a range of archaeological stakeholders including academics, consultants, Indigenous peoples, students, cultural heritage managers and policy formulators.
Resumo:
Bodies of Ding kiln white porcelains and their imitations from Guantai and Jiexiu kilns of the Chinese Song dynasty (960-1279 AD) were analysed for 40 trace elements by inductively coupled plasma mass spectrometry (ICP-MS). Numerous trace element compositions and ratios allow these visually similar products to be distinguished, and a Ding-style shard of uncertain origin is identified as a likely genuine Ding product. In Jiexiu kiln, Ding-style products have trace element features distinctive from blackwares of an inferior quality intended for the lower end market. Based on geochemical behaviour of these trace elements, we propose that geochemically distinctive raw materials were used for Ding-style products of a higher quality, which possibly also underwent purification by levigation prior to use. Capable of analysing over 40 elements with a typical long term precision of < 2%, this high precision ICP-MS method proves to be very powerful for grouping and characterising archaeological ceramics. Combined with geochemical interpretation, it can provide insights into the raw materials and techniques used by ancient potters. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We compare the trace element and Sr isotopic compositions of stoneware bodies made in Yaozhou and Jizhou to characterise these Chinese archaeological ceramics and examine the potential of Sr isotopes in provenance studies. Element concentrations determined by ICP-MS achieve distinct characterisation for Jizhou samples due to their restricted variation, yet had limited success with Yaozhou wares because of their large variability. In contrast, Sr-87/Sr-86 ratios in Yaozhou samples have a very small variation and are all significantly lower than those of Jizhou samples, which show a large variation and cannot be well characterised with Sr isotopes. Geochemical interpretation reveals that Sr-87/Sr-86 ratios will have greater potential to characterise ceramics made of low Rb/Sr materials such as kaolin clay, yet will show larger variations in ceramics made of high Rb/Sr materials such as porcelain stone. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Micro-Raman spectroscopy was applied to the study of multiple layered wall paints from the Rosalila temple, Copan, Honduras, which dates to the Middle Classic period (A.D. 520 to 655). Samples of red, green and grey paint and a thick white overcoating were analysed. The paint pigments have been identified as hematite, celadonite or green earth and a combined carbon/mica mixture. By combining Raman spectroscopy with micro-ATR infrared spectroscopy and environmental scanning electron microscopy (ESEM), a detailed study has been made of the materials and processes used to make the stucco and paints. The use of green earth as a green pigment on Maya buildings has not been reported before. The combination of carbon and muscovite mica to create a reflective paint is also a novel finding.