1000 resultados para 4-etilcatecol


Relevância:

60.00% 60.00%

Publicador:

Resumo:

As leveduras Dekkera/Brettanomyces são responsáveis pela formação de fenóis voláteis em vinhos tintos, tornando-se numa grande preocupação para a produção enológica a nível mundial, devido à dificuldade em controlá-las. Os fenóis voláteis são responsáveis por aromas desagradáveis nos vinhos tintos, diminuindo a sua qualidade e resultando em grandes perdas económicas. Este trabalho teve como principal objectivo estudar um método de preparação de amostra e um método cromatográfico para analisar e quantificar os principais fenóis voláteis (4-etilfenol, 4-etilguaiacol, 4-etilcatecol, 4-vinilfenol e o 4-vinilguaiacol), em meio sintético e em vinhos tintos comerciais. A preparação de amostras foi efectuada através do método de extracção líquido-líquido e a separação dos compostos foi efectuada por cromatografia gasosa com detector de ionização de chama (GC-FID). Os resultados obtidos permitem concluir que é possível detectar e quantificar os fenóis voláteis com este método, incluindo o 4-etilcatecol. O 4-etilfenol foi o composto mais abundante nos vinhos tintos comerciais estudados. ABSTRACT: The yeasts Dekkera I Brettanomyces are responsible for the formation of volatile phenols in red wine, becoming a major concern for the enological production worldwide because of the difficulty in controlling them. The volatile phenols are responsible for unpleasant aromas in red wines, reducing its quality and resulting in great economic lasses. The main objective of this work was to study a sample preparation and a chromatographic method to analyze main volatile phenols (4-ethylphenol, 4-ethylguaiacol, 4-ethylcatechol, 4-vinylphenol and 4-vinylguaiacol) in synthetic wine and red wines. Sample preparation was done by liquid-liquid extraction and compounds separation was achieved by gas chromatography with flame ionization detector (GC­ FID) Results showed that it is possible to detect and quantified volatile phenols with the methodology proposed, including 4-ethylcatechol. 4-ethylphenol was the main compound found in commercial red wines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low temperature synthesis method based on the decomposition of urea at 90°C in water has been developed to synthesise fraipontite. This material is characterised by a basal reflection 001 at 7.44 Å. The trioctahedral nature of the fraipontite is shown by the presence of a 06l band around 1.54 Å, while a minor band around 1.51 Å indicates some cation ordering between Zn and Al resulting in Al-rich areas with a more dioctahedral nature. TEM and IR indicate that no separate kaolinite phase is present. An increase in the Al content however, did result in the formation of some SiO2 in the form of quartz. Minor impurities of carbonate salts were observed during the synthesis caused by to the formation of CO32- during the decomposition of urea.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectra were recorded in the range 400–1800 cm−1 for a series of 15 mixed \[tetrakis(4-tert-butylphenyl)porphyrinato](2,3-naphthalocyaninato) rare earth double-deckers M(TBPP)(Nc) (M = Y; La–Lu except Pm) using laser excitation at 632.8 and 785 nm. Comparisons with bis(naphthalocyaninato) rare earth counterparts reveal that the vibrations of the metallonaphthalocyanine M(Nc) fragment dominate the Raman features of M(TBPP)(Nc). When excited with radiation of 632.8 nm, the most intense vibration appears at about 1595 cm−1, due to the naphthalene stretching. These complexes exhibit the marker Raman band for Nc•− as a medium-intense band in the range 1496–1507 cm−1, attributed to the coupling of pyrrole and aza stretching, while the marker Raman band of Nc2− in intermediate-valence Ce(TBPP)(Nc) appears as a strong band at 1493 cm−1 and is due to the isoindole stretchings. By contrast, when excited with radiation of 785 nm that is in close resonance with the main Q absorption band of the naphthalocyanine ligand, the ring radial vibrations at ca 680 and 735 cm−1 for MIII(TBPP)(Nc) are selectively intensified and are the most intense bands. For the cerium double-decker, the most intense vibration also acting as the marker Raman band of Nc2− appears at 1497 cm−1 with contributions from both pyrrole CC and aza CN stretches. The same vibrational modes show weak to medium intensity scattering at 1506–1509 cm−1 for MIII(TBPP)(Nc) and this is the marker Raman band of Nc•− when thus excited. The scatterings due to the Nc breathings, ring radial vibration, aza group stretchings, naphthalene stretchings, benzoisoindole stretchings and the coupling of pyrrole CC and aza CN stretchings in MIII(TBPP)(Nc) are all slightly blue shifted along with the decrease in rare earth ionic radius, confirming the effects of increased ring–ring interactions on the Raman characteristics of naphthalocyanine in the mixed ring double-deckers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral xocomecatlite is a hydroxy metatellurate mineral with Te6+O4 units. Tellurates may be subdivided according to their formula into three types of tellurate minerals: type (a) (AB)m(TeO4)pZq, type (b) (AB)m(TeO6).xH2O and (c) compound tellurates in which a second anion including the tellurite anion, is involved. The mineral Xocomecatlite is an example of the first type. Raman bands for xocomecatlite at 710, 763 and 796 cm-1 and 600 and 680 cm-1 are attributed to the ν1 (TeO4)2- symmetric and ν3 antisymmetric stretching mode. Raman bands observed at 2867 and 2926 cm-1 are assigned to TeOH stretching vibrations and enable estimation of the hydrogen bond distances of 2.622 Å (2867 cm-1), 2.634 Å (2926 cm-1) involving these OH units. The hydrogen bond distances are very short implying that they are necessary for the stability of the mineral.