894 resultados para 3d Visualisation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geographical information systems (GIS) coupled to 3D visualisation technology is an emerging tool for urban planning and landscape design applications. The utility of 3D GIS for realistically visualising the built environment and proposed development scenarios is much advocated in the literature. Planners assess the merits of proposed changes using visual impact assessment (VIA). We have used Arcview GIS and visualisation software: called PolyTRIM from the University of Toronto, Centre for Landscape Research (CLR) to create a 3D scene for the entrance to a University campus. The paper investigates the thesis that to facilitate VIA in planning and design requires not only visualisation, but also a structured evaluation technique (Delphi) to arbitrate the decision-making process. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monimutkaisen tietokonejärjestelmän suorituskykyoptimointi edellyttää järjestelmän ajonaikaisen käyttäytymisen ymmärtämistä. Ohjelmiston koon ja monimutkaisuuden kasvun myötä suorituskykyoptimointi tulee yhä tärkeämmäksi osaksi tuotekehitysprosessia. Tehokkaampien prosessorien käytön myötä myös energiankulutus ja lämmöntuotto ovat nousseet yhä suuremmiksi ongelmiksi, erityisesti pienissä, kannettavissa laitteissa. Lämpö- ja energiaongelmien rajoittamiseksi on kehitetty suorituskyvyn skaalausmenetelmiä, jotka edelleen lisäävät järjestelmän kompleksisuutta ja suorituskykyoptimoinnin tarvetta. Tässä työssä kehitettiin visualisointi- ja analysointityökalu ajonaikaisen käyttäytymisen ymmärtämisen helpottamiseksi. Lisäksi kehitettiin suorituskyvyn mitta, joka mahdollistaa erilaisten skaalausmenetelmien vertailun ja arvioimisen suoritusympäristöstä riippumatta, perustuen joko suoritustallenteen tai teoreettiseen analyysiin. Työkalu esittää ajonaikaisesti kerätyn tallenteen helposti ymmärrettävällä tavalla. Se näyttää mm. prosessit, prosessorikuorman, skaalausmenetelmien toiminnan sekä energiankulutuksen kolmiulotteista grafiikkaa käyttäen. Työkalu tuottaa myös käyttäjän valitsemasta osasta suorituskuvaa numeerista tietoa, joka sisältää useita oleellisia suorituskykyarvoja ja tilastotietoa. Työkalun sovellettavuutta tarkasteltiin todellisesta laitteesta saatua suoritustallennetta sekä suorituskyvyn skaalauksen simulointia analysoimalla. Skaalausmekanismin parametrien vaikutus simuloidun laitteen suorituskykyyn analysoitiin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reconstructions based directly upon forensic evidence alone are called primary information. Historically this consists of documentation of findings by verbal protocols, photographs and other visual means. Currently modern imaging techniques such as 3D surface scanning and radiological methods (Computer Tomography, Magnetic Resonance Imaging) are also applied. Secondary interpretation is based on facts and the examiner's experience. Usually such reconstructive expertises are given in written form, and are often enhanced by sketches. However, narrative interpretations can, especially in complex courses of action, be difficult to present and can be misunderstood. In this report we demonstrate the use of graphic reconstruction of secondary interpretation with supporting pictorial evidence, applying digital visualisation (using 'Poser') or scientific animation (using '3D Studio Max', 'Maya') and present methods of clearly distinguishing between factual documentation and examiners' interpretation based on three cases. The first case involved a pedestrian who was initially struck by a car on a motorway and was then run over by a second car. The second case involved a suicidal gunshot to the head with a rifle, in which the trigger was pushed with a rod. The third case dealt with a collision between two motorcycles. Pictorial reconstruction of the secondary interpretation of these cases has several advantages. The images enable an immediate overview, give rise to enhanced clarity, and compel the examiner to look at all details if he or she is to create a complete image.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of 3D visualisation of digital information is a recent phenomenon. It relies on users understanding 3D perspectival spaces. Questions about the universal access of such spaces has been debated since its inception in the European Renaissance. Perspective has since become a strong cultural influence in Western visual communication. Perspective imaging assists the process of experimenting by the sketching or modelling of ideas. In particular, the recent 3D modelling of an essentially non-dimensional Cyber-space raises questions of how we think about information in general. While alternate methods clearly exist they are rarely explored within the 3D paradigm (such as Chinese isometry). This paper seeks to generate further discussion on the historical background of perspective and its role in underpinning this emergent field. © 2005 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Most current 3D landscape visualisation systems either use bespoke hardware solutions, or offer a limited amount of interaction and detail when used in realtime mode. We are developing a modular, data driven 3D visualisation system that can be readily customised to specific requirements. By utilising the latest software engineering methods and bringing a dynamic data driven approach to geo-spatial data visualisation we will deliver an unparalleled level of customisation in near-photo realistic, realtime 3D landscape visualisation. In this paper we show the system framework and describe how this employs data driven techniques. In particular we discuss how data driven approaches are applied to the spatiotemporal management aspect of the application framework, and describe the advantages these convey.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Most current 3D landscape visualisation systems either use bespoke hardware solutions, or offer a limited amount of interaction and detail when used in realtime mode. We are developing a modular, data driven 3D visualisation system that can be readily customised to specific requirements. By utilising the latest software engineering methods and bringing a dynamic data driven approach to geo-spatial data visualisation we will deliver an unparalleled level of customisation in near-photo realistic, realtime 3D landscape visualisation. In this paper we show the system framework and describe how this employs data driven techniques. In particular we discuss how data driven approaches are applied to the spatiotemporal management aspect of the application framework, and describe the advantages these convey. © Springer-Verlag Berlin Heidelberg 2006.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Formative exercise on 2D/3D visualisation and interpreting engineering drawings for FEEG1001 students.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present three components of a virtual research environment developed for the ongoing Roman excavation at Silchester. These components — Recycle Bridge, XDB cross-database search, and Arch3D — provide additional services around the existing core of the system, run on the Integrated Archaeological Database (IADB). They provide, respectively, embedding of legacy applications into portals, cross-database searching, and 3D visualisation of stratigraphic information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research presents a novel multi-functional system for medical Imaging-enabled Assistive Diagnosis (IAD). Although the IAD demonstrator has focused on abdominal images and supports the clinical diagnosis of kidneys using CT/MRI imaging, it can be adapted to work on image delineation, annotation and 3D real-size volumetric modelling of other organ structures such as the brain, spine, etc. The IAD provides advanced real-time 3D visualisation and measurements with fully automated functionalities as developed in two stages. In the first stage, via the clinically driven user interface, specialist clinicians use CT/MRI imaging datasets to accurately delineate and annotate the kidneys and their possible abnormalities, thus creating “3D Golden Standard Models”. Based on these models, in the second stage, clinical support staff i.e. medical technicians interactively define model-based rules and parameters for the integrated “Automatic Recognition Framework” to achieve results which are closest to that of the clinicians. These specific rules and parameters are stored in “Templates” and can later be used by any clinician to automatically identify organ structures i.e. kidneys and their possible abnormalities. The system also supports the transmission of these “Templates” to another expert for a second opinion. A 3D model of the body, the organs and their possible pathology with real metrics is also integrated. The automatic functionality was tested on eleven MRI datasets (comprising of 286 images) and the 3D models were validated by comparing them with the metrics from the corresponding “3D Golden Standard Models”. The system provides metrics for the evaluation of the results, in terms of Accuracy, Precision, Sensitivity, Specificity and Dice Similarity Coefficient (DSC) so as to enable benchmarking of its performance. The first IAD prototype has produced promising results as its performance accuracy based on the most widely deployed evaluation metric, DSC, yields 97% for the recognition of kidneys and 96% for their abnormalities; whilst across all the above evaluation metrics its performance ranges between 96% and 100%. Further development of the IAD system is in progress to extend and evaluate its clinical diagnostic support capability through development and integration of additional algorithms to offer fully computer-aided identification of other organs and their abnormalities based on CT/MRI/Ultra-sound Imaging.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structure of two small ossified optic capsules from mid-Palaeozoic placoderm fishes has been revealed in fine detail, by the use of Xray microtomography analysis and 3D visualisation software. These two specimens are 410 million-year-old; they were collected from an Early Devonian (Lochkovian) limestone in central New South Wales, and are the oldest known optic capsules from jawed fishes. The capsules show attachment areas for seven extrinsic eye muscles, rather than the six until recently deemed universal for gnathostomes. The analysis also revealed structures within the ossified cartilage which covered the medial surface of the eyeball, including nerve tracts, vascular canals, and possibly a choroid rete mirabile. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The dissertation addresses the still not solved challenges concerned with the source-based digital 3D reconstruction, visualisation and documentation in the domain of archaeology, art and architecture history. The emerging BIM methodology and the exchange data format IFC are changing the way of collaboration, visualisation and documentation in the planning, construction and facility management process. The introduction and development of the Semantic Web (Web 3.0), spreading the idea of structured, formalised and linked data, offers semantically enriched human- and machine-readable data. In contrast to civil engineering and cultural heritage, academic object-oriented disciplines, like archaeology, art and architecture history, are acting as outside spectators. Since the 1990s, it has been argued that a 3D model is not likely to be considered a scientific reconstruction unless it is grounded on accurate documentation and visualisation. However, these standards are still missing and the validation of the outcomes is not fulfilled. Meanwhile, the digital research data remain ephemeral and continue to fill the growing digital cemeteries. This study focuses, therefore, on the evaluation of the source-based digital 3D reconstructions and, especially, on uncertainty assessment in the case of hypothetical reconstructions of destroyed or never built artefacts according to scientific principles, making the models shareable and reusable by a potentially wide audience. The work initially focuses on terminology and on the definition of a workflow especially related to the classification and visualisation of uncertainty. The workflow is then applied to specific cases of 3D models uploaded to the DFG repository of the AI Mainz. In this way, the available methods of documenting, visualising and communicating uncertainty are analysed. In the end, this process will lead to a validation or a correction of the workflow and the initial assumptions, but also (dealing with different hypotheses) to a better definition of the levels of uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Axial X-ray Computed tomography (CT) scanning provides a convenient means of recording the three-dimensional form of soil structure. The technique has been used for nearly two decades, but initial development has concentrated on qualitative description of images. More recently, increasing effort has been put into quantifying the geometry and topology of macropores likely to contribute to preferential now in soils. Here we describe a novel technique for tracing connected macropores in the CT scans. After object extraction, three-dimensional mathematical morphological filters are applied to quantify the reconstructed structure. These filters consist of sequences of so-called erosions and/or dilations of a 32-face structuring element to describe object distances and volumes of influence. The tracing and quantification methodologies were tested on a set of undisturbed soil cores collected in a Swiss pre-alpine meadow, where a new earthworm species (Aporrectodea nocturna) was accidentally introduced. Given the reduced number of samples analysed in this study, the results presented only illustrate the potential of the method to reconstruct and quantify macropores. Our results suggest that the introduction of the new species induced very limited chance to the soil structured for example, no difference in total macropore length or mean diameter was observed. However. in the zone colonised by, the new species. individual macropores tended to have a longer average length. be more vertical and be further apart at some depth. Overall, the approach proved well suited to the analysis of the three-dimensional architecture of macropores. It provides a framework for the analysis of complex structures, which are less satisfactorily observed and described using 2D imaging. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EXECUTIVE SUMMARY This PhD research, funded by the Swiss Sciences Foundation, is principally devoted to enhance the recognition, the visualisation and the characterization of geobodies through innovative 3D seismic approaches. A series of case studies from the Australian North West Shelf ensures the development of reproducible integrated 3D workflows and gives new insight into local and regional stratigraphic as well as structural issues. This project was initiated in year 2000 at the Geology and Palaeontology Institute of the University of Lausanne (Switzerland). Several collaborations ensured the improvement of technical approaches as well as the assessment of geological models. - Investigations into the Timor Sea structural style were carried out at the Tectonics Special Research Centre of the University of Western Australia and in collaboration with Woodside Energy in Perth. - Seismic analysis and attributes classification approach were initiated with Schlumberger Oilfield Australia in Perth; assessments and enhancements of the integrated seismic approaches benefited from collaborations with scientists from Schlumberger Stavanger Research (Norway). Adapting and refining from "linear" exploration techniques, a conceptual "helical" 3D seismic approach has been developed. In order to investigate specific geological issues this approach, integrating seismic attributes and visualisation tools, has been refined and adjusted leading to the development of two specific workflows: - A stratigraphic workflow focused on the recognition of geobodies and the characterization of depositional systems. Additionally, it can support the modelling of the subsidence and incidentally the constraint of the hydrocarbon maturity of a given area. - A structural workflow used to quickly and accurately define major and secondary fault systems. The integration of the 3D structural interpretation results ensures the analysis of the fault networks kinematics which can affect hydrocarbon trapping mechanisms. The application of these integrated workflows brings new insight into two complex settings on the Australian North West Shelf and ensures the definition of astonishing stratigraphic and structural outcomes. The stratigraphic workflow ensures the 3D characterization of the Late Palaeozoic glacial depositional system on the Mermaid Nose (Dampier Subbasin, Northern Carnarvon Basin) that presents similarities with the glacial facies along the Neotethys margin up to Oman (chapter 3.1). A subsidence model reveals the Phanerozoic geodynamic evolution of this area (chapter 3.2) and emphasizes two distinct mode of regional extension for the Palaeozoic (Neotethys opening) and Mesozoic (abyssal plains opening). The structural workflow is used for the definition of the structural evolution of the Laminaria High area (Bonaparte Basin). Following a regional structural characterization of the Timor Sea (chapter 4.1), a thorough analysis of the Mesozoic fault architecture reveals a local rotation of the stress field and the development of reverse structures (flower structures) in extensional setting, that form potential hydrocarbon traps (chapter 4.2). The definition of the complex Neogene structural architecture associated with the fault kinematic analysis and a plate flexure model (chapter 4.3) suggest that the Miocene to Pleistocene reactivation phases recorded at the Laminaria High most probably result from the oblique normal reactivation of the underlying Mesozoic fault planes. This episode is associated with the deformation of the subducting Australian plate. Based on these results three papers were published in international journals and two additional publications will be submitted. Additionally this research led to several communications in international conferences. Although the different workflows presented in this research have been primarily developed and used for the analysis of specific stratigraphic and structural geobodies on the Australian North West Shelf, similar integrated 3D seismic approaches will have applications to hydrocarbon exploration and production phases; for instance increasing the recognition of potential source rocks, secondary migration pathways, additional traps or reservoir breaching mechanisms. The new elements brought by this research further highlight that 3D seismic data contains a tremendous amount of hidden geological information waiting to be revealed and that will undoubtedly bring new insight into depositional systems, structural evolution and geohistory of the areas reputed being explored and constrained and other yet to be constrained. The further development of 3D texture attributes highlighting specific features of the seismic signal, the integration of quantitative analysis for stratigraphic and structural processes, the automation of the interpretation workflow as well as the formal definition of "seismo-morphologic" characteristics of a wide range of geobodies from various environments would represent challenging examples of continuation of this present research. The 21st century will most probably represent a transition period between fossil and other alternative energies. The next generation of seismic interpreters prospecting for hydrocarbon will undoubtedly face new challenges mostly due to the shortage of obvious and easy targets. They will probably have to keep on integrating techniques and geological processes in order to further capitalise the seismic data for new potentials definition. Imagination and creativity will most certainly be among the most important quality required from such geoscientists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La compréhension de la structure d’un logiciel est une première étape importante dans la résolution de tâches d’analyse et de maintenance sur celui-ci. En plus des liens définis par la hiérarchie, il existe un autre type de liens entre les éléments du logiciel que nous appelons liens d’adjacence. Une compréhension complète d’un logiciel doit donc tenir compte de tous ces types de liens. Les outils de visualisation sont en général efficaces pour aider un développeur dans sa compréhension d’un logiciel en lui présentant l’information sous forme claire et concise. Cependant, la visualisation simultanée des liens hiérarchiques et d’adjacence peut donner lieu à beaucoup d’encombrement visuel, rendant ainsi ces visualisations peu efficaces pour fournir de l’information utile sur ces liens. Nous proposons dans ce mémoire un outil de visualisation 3D qui permet de représenter à la fois la structure hiérarchique d’un logiciel et les liens d’adjacence existant entre ses éléments. Notre outil utilise trois types de placements différents pour représenter la hiérarchie. Chacun peut supporter l’affichage des liens d’adjacence de manière efficace. Pour représenter les liens d’adjacence, nous proposons une version 3D de la méthode des Hierarchical Edge Bundles. Nous utilisons également un algorithme métaheuristique pour améliorer le placement afin de réduire davantage l’encombrement visuel dans les liens d’adjacence. D’autre part, notre outil offre un ensemble de possibilités d’interaction permettant à un usager de naviguer à travers l’information offerte par notre visualisation. Nos contributions ont été évaluées avec succès sur des systèmes logiciels de grande taille.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information technology in construction (ITC) has been gaining wide acceptance and is being implemented in the construction research domains as a tool to assist decision makers. Most of the research into visualization technologies (VT) has been on the wide range of 3D and simulation applications suitable for construction processes. Despite its development with interoperability and standardization of products, VT usage has remained very low when it comes to communicating and addressing the needs of building end-users (BEU). This paper argues that building end users are a source of experience and expertise that can be brought into the briefing stage for the evaluation of design proposals. It also suggests that the end user is a source of new ideas promoting innovation. In this research a positivistic methodology that includes the comparison of 3D models and the traditional 2D methods is proposed. It will help to identify "how much", if anything, a non-spatial specialist can gain in terms Of "understanding" of a particular design proposal presented, using both methods.