997 resultados para 3_dimcnsional distinct element
Resumo:
采用面一面接触的三维离散元刚性块体模型,从实测节理面中取出其中的三组,按照其倾向、倾角和节理间距将三峡永久船闸未开挖的区域划分为10~5个离散单元,通过施加力边界条件,给出了与实测初始地应力场接近的数值模拟结果;然后,分4步模拟了永久船闸的开挖过程。计算结果表明:开挖过程会引起节理面出现张开趋势,个别岩体还会沿着节理面滑移。岩体位移的不对称现象较为自然地说明了由节理引起的岩体各向异性特征。
Distinct Element Analysis on Propagation Characteristics of P-Wave in Rock Pillar with Finite length
Resumo:
以节理岩体等效刚度的概念为基础,讨论了离散元刚性块体模型中节理刚度的选取问题。采用面-面接触模型模拟了纵波在一维岩体中的传播,给出了纵波波形;研究了阻尼比、软弱夹层以及节理间是否可拉对波传播规律的影响。
Resumo:
TNF-α is a pleiotropic cytokine involved in normal homeostasis and plays a key role in defending the host from infection and malignancy. However when deregulated, TNF-α can lead to various disease states. Therefore, understanding the mechanisms by which TNF-α is regulated may aid in its control. In spite of the knowledge gained regarding the transcriptional regulation of TNF-α further characterization of specific TNF-α promoter elements remains to be elucidated. In particular, the T&barbelow;NF-α A&barbelow;P-1/C&barbelow;RE-like (TAC) element of the TNF-α promoter has been shown to be important in the regulation of TNF-α in lymphocytes. Activating transcription factor-2 (ATF-2) and c-Jun were shown to bind to and transactivate the TAC element However, the role of TAC and transcription factors ATF-2 and c-Jun in the regulation of TNF-α in monocytes is not as well characterized. Lipopolysaccharide (LPS), a potent activator of TNF-α in monocytes, provides a good model to study the involvement of TAC in TNF-α regulation. On the other hand, all-tram retinoic acid (ATRA), a physiological monocyte-differentiation agent, is unable to induce TNF-α protein release. ^ To delineate the functional role of TAC, we transfected the wildtype or the TAC deleted TNF-α promoter-CAT construct into THP-1 promonocytic cells before stimulating them with LPS. CAT activity was induced 17-fold with the wildtype TNF-α promoter, whereas the CAT activity was uninducible when the TAC deletion mutant was used. This daft suggests that TAC is vital for LPS to activate the TNF-α promoter. Electrophoretic mobility shift assays using the TAC element as a probe showed a unique pattern for LPS-activated cells: the disappearance of the upper band of a doublet seen in untreated and ATRA treated cells. Supershift analysis identified c-Jun and ATF-2 as components of the LPS-stimulated binding complex. Transient transfection studies using dominant negative mutants of JNK, c-Jun, or ATF-2 suggest that these proteins we important for LPS to activate the TNF-α promoter. Furthermore, an increase in phosphorylated or activated c-Jun was bound to the TAC element in LPS-stimulated cells. Increased c-Jun activation was correlated with increased activity of Jun N-terminal kinase (JNK), a known upstream stimulator of c-Jun and ATF-2, in LPS-stimulated monocytes. On the other hand, ATRA did not induce TNF-α protein release nor changes in the phosphorylation of c-Jun or JNK activity, suggesting that pathways leading to ATRA differentiation of monocytic cells are independent of TNF-α activation. Together, the induction of TNF-α gene expression seems to require JNK activation, and activated c-Jun binding to the TAC element of the TNF-α promoter in THP-1 promonocytic cells. ^
Resumo:
Computer-aided tomography has been used for many years to provide significant information about the internal properties of an object, particularly in the medical fraternity. By reconstructing one-dimensional (ID) X-ray images, 2D cross-sections and 3D renders can provide a wealth of information about an object's internal structure. An extension of the methodology is reported here to enable the characterization of a model agglomerate structure. It is demonstrated that methods based on X-ray microtomography offer considerable potential in the validation and utilization of distinct element method simulations also examined.
Resumo:
该文主要是在三维面-面接触离散刚体单元模型基础上,提出考虑可变形、断裂三维离散单元模型,并推导其相应的物理方程及运动方程.在已有划分块体单元计算算法基础上,对单元的自动划分算法作了相应改进.针对具有倾斜表面边坡坡体,可以利用堆积法自动划分块体单元,更加贴近工程实际应用,使三维离散单元法程序应用更广.
Resumo:
Incident energy gets transmitted, reflected and absorbed across an interface in jointed rock mass leading to energy dissipation and alteration of waves. Wave velocities get attenuated during their propagation across joints and this behavior is studied using bender/extender element tests. The velocity attenuation and modulus reduction observed in experimental tests are modeled with three dimensional distinct element code and results are validated. Normal propagation of an incident shear wave through a jointed rock mass cause slip of the rock blocks if shear stress of wave exceeds the shear strength of the joint. As the properties of joint determine the transmission of energy across an interface, a parametric study is then conducted with the validated numerical model by varying the parameters that may determine the energy transmission across a joint using modified Miller's method. Results of the parametric study are analyzed and presented in the paper. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
以节理岩体等效刚度的概念为基础,讨论了离散元刚性块体模型中节理刚度的选取问题。采用面-面接触模型模拟了纵波在一维岩体中的传播,给出了纵波波形;研究了阻尼比、软弱夹层以及节理间是否可拉对波传播规律的影响。
Resumo:
采用面-面接触的三维离散元刚性块体模型,从实测节理面中取出其中的三组,按照其倾向、倾角和节理间距将三峡永久船闸未开挖的区域划分为10~5个离散单元,通过施加力边界条件,给出了与实测初始地应力场接近的数值模拟结果;然后,分4步模拟了永久船闸的开挖过程。计算结果表明:开挖过程会引起节理面出现张开趋势,个别岩体还会沿着节理面滑移。岩体位移的不对称现象较为自然地说明了由节理引起的岩体各向异性特征。
Resumo:
在三维离散元面-面接触刚性块体单元模型基础上,提出块体单元允许变形、断裂的一种计算模型.此计算模型不仅考虑岩块之间的节理刚度,而且考虑岩块自身变形以及岩块可能发生断裂的情况.
Resumo:
本文根据面-面接触模型,写出了三维离散元的物理方程及运动方程,对于接触刚度、阻尼系数、时步、计算控制及块体的滑动失稳判据等作了讨论。在NURBM-3D 长方体单元基础上改进了其划分单元的算法,依据岩体中三组真实的节理面划分平行六面体单元,实现了网格的自动剖分,从而可以将单元视为真实的岩块,更客观地体现了节理面对岩体稳定性的影响。运用改进后的三维离散元方法,编制了计算程序,对三峡工程永久船闸高连坡开挖进行了模拟。计算过程包括初始地应力场模拟、岩体开挖过程两个阶段。模拟计算首先给出了为水平、垂直节理面所切割的长方体单元情况下的应力场分析,考证了程序的可行性。将已有的三峡永久船闸实测节理简化为三组节理,完成了初始地应力场的模拟,给出了分四步开挖后的岩体位移场和应力场,计算出岩体开挖过程中产生滑动块体的位置,其结果可以定性地表明:沿节理面的块体滑动是边坡失稳的主要模式。编制的后处理程序提供了计算数据库与绘图软件Origin的接口,可以画出任意剖面或节理面上的应力等值线、位移矢量图及滑动块体分布图,由此可以直观判断岩体不稳定区域和高应力区范围。编制的计算程序在PC机上计算了10万块体单元,用于模拟大型工程,其计算结果与有限元及类似的连续介质模型相比更为合理,为用离散元法进一步研究可变形块体及岩体的蠕变提供了一种切实可行的工具。将离散元法应用于大型工程三维计算是可行的,但在本构模型建立、岩体破坏参数选择等方面均有等于更深入的研究,其结果也有待于更多工程的验证。
Resumo:
The effects of initial soil fabric on behaviors of granular soils are investigated by using Distinct Element Method (DEM) numerical simulation. Soil specimens are represented by an assembly of non-uniform sized spheres with different initial contact normal distributions. Isotropically consolidated triaxial compression loading and extension unloading in both undrained and drained conditions are simulated for vertically- and horizontally-sheared specimens. The numerical simulation results are compared qualitatively with the published experimental data and the effects of initial soil fabric on resulting soil behaviors are discussed, including the effects of specimen reconstitution methods, effects of large preshearing, and anisotropic characteristics in undrained and drained conditions. The effects of initial soil fabric and mode of shearing on the quasi-steady state line are also investigated. The numerical simulation results can systematically explain that the observed experimental behaviors of granular soils are due principally to their conditions of the initial soil fabric. This outcome provides insights into the observed phenomena in microscopic view. © 2011 Elsevier Ltd.
Resumo:
The effects of initial soil fabric and mode of shearing on quasi-steady state line in void ratiostress space are studied by employing the Distinct Element Method numerical analysis. The results show that the initial soil fabric and the mode of shearing have a profound effect on the location of the quasi-steady state line. The evolution of the soil fabric during the course of undrained shearing shows that the specimens with different initial soil fabrics reach quasi-steady state at various soil fabric conditions. At quasi-steady state, the soil fabric has a significant adjustment to change its behavior from contractive to dilative. As the stress state approaches the steady state, the soil fabrics of different initial conditions become similar. The numerical analysis results are compared qualitatively with the published experimental data and the effects of specimen reconstitution methods and mode of shearing found in the experimental studies canbe systematically explained by the numerical analysis. © 2009 Taylor & Francis Group.
Resumo:
简述了几类工程地质灾害不同的表现形式和成灾机理,提炼了地质灾害的共性问题。地质灾害体通常是由不良地质体经历孕育、成形、演化、发生、发展和结束的几个阶段和状态,与之相关联的破坏状态包括既有破坏、局部再破坏、贯穿性破坏、碎裂性破坏和运动性破坏。将地质灾害预测转化为破坏状态的判断是科学预测的技术途径。阐述了如下的关键科学问题:(1)地质体具有非连续、非均匀、流固耦合特性、这些特性只有在地质灾害体的尺度和赋存的环境中才能表现出来、更为重要的是人们只能获得地质体的局部的信息,认知地质体的运动规律必需建立现场监测和内部结构破坏之间的联系。通过局部的信息反分析地质体的当前状态是工程地质灾害的关键科学问题之一;(2)地质灾害体的力学包含了固体的连续介质模型、非连续介质模型、散体介质的流动模型、多相流体模型等,灾害演化的过程也是从固体发展为流体的过程。对灾害的判别不能仅仅依赖于材料强度的判断,需要建立地质体尺度上的渐进破坏的判据,地质体灾害形成的机理。(3)处于复杂地质环境中的灾害体结构复杂并具有显著的尺度效应。实际工程不同方向上的破坏尺度以及最大破坏尺度与实验室试样尺度都有数个量级的差别;地质灾害的形成是一个时间和空间的演化过程,灾害体宏观变化的范围和位移的尺度越来越大而与之对应的时间尺度越来越小;定量地描述这样的物理过程,需要跨尺度的数值计算方法。论文简述了基于连续介质离散元方法(CDEM--continuum-based distinct element method)的基本原理,主要功能以及在工程地质灾害预测中应用的实例。
Resumo:
This thesis bases on horizontal research project “The research about the fine structure and mechanical parameters of abutment jointed rock mass of high arch dam on Jinping Ⅰ Hydropower Station, Yalong River” and “The research about the fine structure and mechanical parameters of the columnar basalt rock mass on Baihetan Hydropower Station, Jinsha River”. A rounded system about the fine structure description and rock mass classification is established. This research mainly contains six aspects as follow: (1) Methods about fine structure description of the window rock mass; (2) The window rock mass classification about the fine structure; (3) Model test study of intermittent joints; (4) Window rock mass strength theory; (5) Numerical experimentations about window rock mass; (6) The multi-source fusion of mechanical parameters based on Bayes principle. Variation of intact rock strength and joint conditions with the weathering and relaxation degree is studied through the description of window rock mass. And four principal parameters: intact rock point load strength, integration degree of window rock mass, joint conditions, and groundwater condition is selected to assess the window rock mass. Window rock mass is classified into three types using the results of window rock mass fine structure description combined with joints develop model. Scores about intact rock strength, integrality condition, divisional plane condition and groundwater conditions are given based on window rock mass fine structure description. Then quality evaluation about two different types of rock mass: general joint structure and columnar jointing structure are carried out to use this window rock mass classification system. Application results show that the window rock mass classification system is effective and applicable. Aimed at structural features of window structure of “the rock mass damaged by recessive fracture”, model tests and numerical models are designed about intermittent joints. By conducting model tests we get shear strength under different normal stress in integrated samples, through samples and intermittent joints samples. Also, the changing trends of shear strength in various connectivity rates are analyzed. We numerically simulate the entire process of direct shear tests by using PFC2D. In order to tally the stress-strain curve of numerical simulation with experimental tests about both integrated samples and through samples, we adjust mechanical factors between particles. Through adopting the same particle geometric parameter, the numerical sample of intermittent joints in different connective condition is re-built. At the same time, we endow the rock bridges and joints in testing samples with the fixed particle contacting parameters, and conduct a series of direct shear tests. Then the destructive process and mechanical parameters in both micro-prospective and macro-prospective are obtained. By synthesizing the results of numerical and sample tests and analyzing the evolutionary changes of stress and strain on intermittent joints plane, we conclude that the centralization of compressive stress on rock bridges increase the shear strength of it. We discuss the destructive mechanics of intermittent joints rock under direct shear condition, meanwhile, divide the whole shear process into five phases, which are elasticity phase, fracture initiation phase, peak value phase, after-peak phase and residual phase. In development of strength theory, the shear strength mechanisms of joint and rock bridge are analyzed respectively. In order to apply the deducted formulation conveniently in the real projects, a relationship between these formulations and Mohr-Coulomb hypothesis is built up. Some sets of numerical simulation methods, i.e. the distinct element method (UDEC) based on in-situ geology mapping are developed and introduced. The working methods about determining mechanical parameters of intact rock and joints in numerical model are studied. The operation process and analysis results are demonstrated detailed from the research on parameters of rock mass based on numerical test in the Jinping Ⅰ Hydropower Station and Baihetan Hydropower Station. By comparison,the advantages and disadvantages are discussed. Results about numerical simulation study show that we can get the shear strength mechanical parameters by changing the load conditions. The multi-source rock mass mechanical parameters can be fused by the Bayes theory, which are test value, empirical value and theoretical value. Then the value range and its confidence probability of different rock mass grade are induced and these data supports the reliability design.
Resumo:
Toppling is a major failure model in anti-dip layered rock slopes. Because of the limited by testing means and experimental apparatus, present research on the deformation mechanism and stability analysis are mainly focus on the 2-Dimensional deformation, and the research really based on 3-Dimension is still limited. Therefore, based on the present research station, the article rely on the important hydroelectric project of typical anti-dip layered rock slopes -- The left bank slope of Long-tan hydropower-station in Guang Xi, China, and focused on the influencing factors, deformation mechanism and stability analysis of anti-dip layered rock slopes, three problems as follows are researched in this paper. (1) Deformation influencing factor analysis on ant-dip layered rock slopes Three influencing factors are included: geological factor, engineering factor and environmental factor. It is concluded that the toppling deformation of anti-dip layered rock slopes are more sensitive to geological and engineering factors, but less sensitive to environmental factor. In addition, the sensitivity of various factors to the rock toppling deformation is also arranged sequentially as follows: construction, gravitation, rainfall (underground water) and rock structure intensity, etc. (2) 3D deformation study on the anti-dip layered toppling rock slopes Used 3D Distinct Element Method (3DEC) analyzed the 3D deformation characteristic of anti-dip layered rock slops. It can be seen that the toppling characteristics are obvious when the inter-angle between slope direction and layer striking direction is under 20o, when the inter-angle is over 20o and equal or less than 40o,the toppling deformation characteristics decrease sharply with increase of inter-angle, when the inter-angle is over 40o , the slope deformation is not controlled by joints but influenced by other failure mode. Therefore, in order to quantify the toppling characteristics, a differential value of displacement vector angle between layered rock slope and block rock slope is proposed as a key index to distinguish failure model for anti-dip layered rock slopes, and it was applied to study the toppling of the rock slopes at Guangxi Long-tan hydropower station, China. The results indicated that the index was effective and instructive for analyzing the anti-dip layered rock slopes. (3) Stability analysis methods Because of the imperfection of some present slope analysis methods, based on slope failure mode and those three influencing factors, “slope stability entropy” method is defined in this paper, which makes good use of the sensitivity of relational matrix to influencing factors on slope stability and the qualification characteristics for information entropy to the irregularity of slope deformation. By this method, not only the randomness of geologic body on the base of dynamic analysis of slope failure mode is fully concerned, but also it makes the analysis time-saving and simple. Finally, the research findings were used to the engineering example successfully, and rational conclusion has been obtained.