989 resultados para 3D scanning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

*** Purpose – Computer tomography (CT) for 3D reconstruction entails a huge number of coplanar fan-beam projections for each of a large number of 2D slice images, and excessive radiation intensities and dosages. For some applications its rate of throughput is also inadequate. A technique for overcoming these limitations is outlined. *** Design methodology/approach – A novel method to reconstruct 3D surface models of objects is presented, using, typically, ten, 2D projective images. These images are generated by relative motion between this set of objects and a set of ten fanbeam X-ray sources and sensors, with their viewing axes suitably distributed in 2D angular space. *** Findings – The method entails a radiation dosage several orders of magnitude lower than CT, and requires far less computational power. Experimental results are given to illustrate the capability of the technique *** Practical implications – The substantially lower cost of the method and, more particularly, its dramatically lower irradiation make it relevant to many applications precluded by current techniques *** Originality/value – The method can be used in many applications such as aircraft hold-luggage screening, 3D industrial modelling and measurement, and it should also have important applications to medical diagnosis and surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bite mark analysis offers the opportunity to identify the biter based on the individual characteristics of the dentitions. Normally, the main focus is on analysing bite mark injuries on human bodies, but also, bite marks in food may play an important role in the forensic investigation of a crime. This study presents a comparison of simulated bite marks in different kinds of food with the dentitions of the presumed biter. Bite marks were produced by six adults in slices of buttered bread, apples, different kinds of Swiss chocolate and Swiss cheese. The time-lapse influence of the bite mark in food, under room temperature conditions, was also examined. For the documentation of the bite marks and the dentitions of the biters, 3D optical surface scanning technology was used. The comparison was performed using two different software packages: the ATOS modelling and analysing software and the 3D studio max animation software. The ATOS software enables an automatic computation of the deviation between the two meshes. In the present study, the bite marks and the dentitions were compared, as well as the meshes of each bite mark which were recorded in the different stages of time lapse. In the 3D studio max software, the act of biting was animated to compare the dentitions with the bite mark. The examined food recorded the individual characteristics of the dentitions very well. In all cases, the biter could be identified, and the dentitions of the other presumed biters could be excluded. The influence of the time lapse on the food depends on the kind of food and is shown on the diagrams. However, the identification of the biter could still be performed after a period of time, based on the recorded individual characteristics of the dentitions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cultural heritage sites all over the world are at risk due to aggressive urban expansion, development, wars and general obsolescence. Not all objects are recorded in detail although they may have social and historical significance. For example more emphasis is placed on the recording of castles and palaces than on crofters’ cottages or tenement blocks, although their history can be just as rich. This paper will investigate the historic fabric of Aberdeen through the use of digital scanning, supported by a range of media including old photographs and paintings. Dissemination of social heritage through visualisations will be explored and how this can aid the understanding of space within the city or specific area. Focus will be given to the major statues/monuments within the context of the city centre, exploring their importance in their environment. In addition studying why many have been re-located away from their original site, the reasons why, and how we have perhaps lost some of the social and historical importance of why that monument was first located there. It will be argued that Digital Media could be utilised for much more than re-creation and re-presentation of physical entities. Digital scanning, in association with visualisation tools, is used to capture the essence of both the cultural heritage and the society that created or used the sites in association with visualisation tools and in some way re-enacting the original importance placed upon the monument in its original location, through adoption of BIM Heritage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protection and preservation of our cultural and literary historical and documentary heritage are particularly relevant today. The paper presents methods for creating digital resources of historical artifacts related to the Balkan war. Special attention is paid to the process of 3D scanning of objects. The methodology will be used in building an electronic archive and Virtual Museum.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Until today, most of the documentation of forensic relevant medical findings is limited to traditional 2D photography, 2D conventional radiographs, sketches and verbal description. There are still some limitations of the classic documentation in forensic science especially if a 3D documentation is necessary. The goal of this paper is to demonstrate new 3D real data based geo-metric technology approaches. This paper present approaches to a 3D geo-metric documentation of injuries on the body surface and internal injuries in the living and deceased cases. Using modern imaging methods such as photogrammetry, optical surface and radiological CT/MRI scanning in combination it could be demonstrated that a real, full 3D data based individual documentation of the body surface and internal structures is possible in a non-invasive and non-destructive manner. Using the data merging/fusing and animation possibilities, it is possible to answer reconstructive questions of the dynamic development of patterned injuries (morphologic imprints) and to evaluate the possibility, that they are matchable or linkable to suspected injury-causing instruments. For the first time, to our knowledge, the method of optical and radiological 3D scanning was used to document the forensic relevant injuries of human body in combination with vehicle damages. By this complementary documentation approach, individual forensic real data based analysis and animation were possible linking body injuries to vehicle deformations or damages. These data allow conclusions to be drawn for automobile accident research, optimization of vehicle safety (pedestrian and passenger) and for further development of crash dummies. Real 3D data based documentation opens a new horizon for scientific reconstruction and animation by bringing added value and a real quality improvement in forensic science.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Since the availability of 3D full body scanners and the associated software systems for operations with large point clouds, 3D anthropometry has been marketed as a breakthrough and milestone in ergonomic design. The assumptions made by the representatives of the 3D paradigm need to be critically reviewed though. 3D anthropometry has advantages as well as shortfalls, which need to be carefully considered. While it is apparent that the measurement of a full body point cloud allows for easier storage of raw data and improves quality control, the difficulties in calculation of standardized measurements from the point cloud are widely underestimated. Early studies that made use of 3D point clouds to derive anthropometric dimensions have shown unacceptable deviations from the standardized results measured manually. While 3D human point clouds provide a valuable tool to replicate specific single persons for further virtual studies, or personalize garment, their use in ergonomic design must be critically assessed. Ergonomic, volumetric problems are defined by their 2-dimensional boundary or one dimensional sections. A 1D/2D approach is therefore sufficient to solve an ergonomic design problem. As a consequence, all modern 3D human manikins are defined by the underlying anthropometric girths (2D) and lengths/widths (1D), which can be measured efficiently using manual techniques. Traditionally, Ergonomists have taken a statistical approach to design for generalized percentiles of the population rather than for a single user. The underlying method is based on the distribution function of meaningful single and two-dimensional anthropometric variables. Compared to these variables, the distribution of human volume has no ergonomic relevance. On the other hand, if volume is to be seen as a two-dimensional integral or distribution function of length and girth, the calculation of combined percentiles – a common ergonomic requirement - is undefined. Consequently, we suggest to critically review the cost and use of 3D anthropometry. We also recommend making proper use of widely available single and 2-dimensional anthropometric data in ergonomic design.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched medium is 71.8%, an increase of 6.4% compared to that achieved using conventional ART algorithm. Smaller diameter dosimeters are scanned with dry air scanning by using a wide-angle lens that collects refracted light. The images reconstructed using cone beam geometry is seen to deteriorate in some planes as those regions are not scanned. Refraction correction is important and needs to be taken in to consideration to achieve quantitatively accurate dose reconstructions. Refraction modeling is crucial in array based scanners as it is not possible to identify refracted rays in the sinogram space.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A partir das dimensões dos indivíduos pode-se definir dimensionamentos adequados para os produtos e postos de trabalho, proporcionando segurança e conforto aos usuários. Com o avanço da tecnologia de digitalização de imagens (escaneamento) 3D, é possível tirar algumas medidas de maneira mais rápida e com a redução da presença do entrevistado durante o processo. No entanto, faltam estudos que avaliem estas tecnologias no Brasil, sendo necessária a realização de uma comparação das tecnologias e das respectivas precisões para que seu uso em pesquisas. Com o objetivo de oferecer métodos comparativos para escolha dos marcadores e equipamentos a serem utilizados em uma pesquisa antropométrica tridimensional da população brasileira, no presente estudo estão comparadas duas tecnologias de escaneamento: o sistema a laser WBX da empresa norte americana Cyberware e o sistema MHT da empresa russa Artec Group. O método para avaliação da precisão dimensional dos dados advindos desses equipamentos de digitalização de imagens 3D teve cinco etapas: Estudo dos processos de escaneamento; Escaneamento dos marcadores de pontos anatômicos; Escaneamento utilizando um corpo de prova cilíndrico; Escaneamento de um manequim; Escaneamento de um voluntário que teve seus pontos anatômicos marcados para a retirada de medidas. Foi feita uma comparação entre as medidas retiradas manualmente, por meio de antropômetro e virtualmente, com o auxílio do software de modelagem tridimensional Rhinoceros. Em relação aos resultados obtidos na avaliação do manequim e do voluntário, concluiu-se que a magnitude do erro absoluto é semelhante para ambos os scanners, e permanece constante independentemente das dimensões sob análise. As principais diferenças são em relação às funcionalidades dos equipamentos.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of computer-assisted technologies such as CAD - Computed Aided Design, CAM - Computed Aided Manufacturing, CAE - Computed Aided Engineering and CNC - Computed Numerical Control, are priorities in engineering and product designers. However, the dimensional measurement between the virtual and the real product design requires research, and dissemination procedures among its users. This work aims to use these technologies, through analysis and measurement of a CNC milling machine, designed and assembled in the university. Through the use of 3D scanning, and analyzing images of the machined samples, and its original virtual files, it was possible to compare the sizes of these samples in counterposition to the original virtual dimensions, we can state that the distortions between the real and virtual, are within acceptable limits for this type of equipment. As a secondary objective, this work seeks to disseminate and make more accessible the use of these technologies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

[ES] Se analizan las posibilidades del Image based modeling (IBM), como técnica de escaneado 3D de bajo coste para la modelización de inscripciones romanas, a partir del trabajo realizado en el Museo Arqueológico Nacional de Madrid sobre una amplia tipología de soportes epigráficos (piedra, bronce, arcilla), con resultados óptimos para la catalogación, estudio y difusión de este tipo de documentación histórica. Los resultados obtenidos permiten obtener inscripciones romanas en 3D que se pueden incorporar a los proyectos de epigrafía digital en curso, permitiendo su acceso a través de ordenadores y dispositivos móviles, sin coste añadido para los investigadores.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Los avances experimentados en los últimos años en las tecnologías basadas en el procesamiento de las fotografías digitales, permite abordar proyectos de modelización 3D de inscripciones romanas, como el realizado en el Museo Arqueológico Nacional (Madrid). La utilización de esta tecnología innovadora aporta a los especialistas mejores reproducciones que la fotografía convencional, que supondrán un enriquecimiento de las bases de datos epigráficas, pero su utilidad se extiende también a la propia enseñanza de la Epigrafía.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This project constructed virtual plant leaf surfaces from digitised data sets for use in droplet spray models. Digitisation techniques for obtaining data sets for cotton, chenopodium and wheat leaves are discussed and novel algorithms for the reconstruction of the leaves from these three plant species are developed. The reconstructed leaf surfaces are included into agricultural droplet spray models to investigate the effect of the nozzle and spray formulation combination on the proportion of spray retained by the plant. A numerical study of the post-impaction motion of large droplets that have formed on the leaf surface is also considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigated a potential source of inaccuracy for diode measurements in modulated beams; the effect of diode housing asymmetry on measurement results. The possible effects of diode housing asymmetry on the measurement of steep dose gradients were evaluated by measuring 5x5 cm2 beam profiles, with three cylindrical diodes and two commonly used ionization chambers, with each dosimeter positioned in a 3D scanning water tank with its stem perpendicular to the beam axis (horizontal) and parallel to the direction of scanning. The resulting profiles were used to compare the penumbrae measured with the diode stem pointing into (equivalent to a “stem-first” setup) and out of the field (equivalent to a “stem-last” setup) in order to evaluate the effects of dosimeter alignment and thereby identify the effects of dosimeter asymmetry. The stem-first and stem-last orientations resulted in differences of up to 0.2 mm in the measured 20-80% penumbra widths and differences of up to 0.4 mm in the off axis position of the 90% isodose. These differences, which are smaller than previously reported for older model dosimeters, were apparent in the profile results for both diodes and small volume ionization chambers. As an extension to this study, the practical use of all five dosimeters was exemplified by measuring point doses in IMRT test beams. These measurements showed good agreement (within 2%) between the diodes and the small volume ionization chamber, with all of these dosimeters being able to identify a region 3% under-dosage which was not identified by a larger volume (6 mm diameter) ionization chamber. The results of this work should help to remove some of the barriers to the use of diodes for modulated radiotherapy dosimetry in the future.