987 resultados para 3D registration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We developed an automated system that registers chest CT scans temporally. Our registration method matches corresponding anatomical landmarks to obtain initial registration parameters. The initial point-to-point registration is then generalized to an iterative surface-to-surface registration method. Our "goodness-of-fit" measure is evaluated at each step in the iterative scheme until the registration performance is sufficient. We applied our method to register the 3D lung surfaces of 11 pairs of chest CT scans and report promising registration performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A difficulty in lung image registration is accounting for changes in the size of the lungs due to inspiration. We propose two methods for computing a uniform scale parameter for use in lung image registration that account for size change. A scaled rigid-body transformation allows analysis of corresponding lung CT scans taken at different times and can serve as a good low-order transformation to initialize non-rigid registration approaches. Two different features are used to compute the scale parameter. The first method uses lung surfaces. The second uses lung volumes. Both approaches are computationally inexpensive and improve the alignment of lung images over rigid registration. The two methods produce different scale parameters and may highlight different functional information about the lungs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Présentation: Cet article a été publié dans le journal : Computerised medical imaging and graphics (CMIG). Le but de cet article est de recaler les vertèbres extraites à partir d’images RM avec des vertèbres extraites à partir d’images RX pour des patients scoliotiques, en tenant compte des déformations non-rigides due au changement de posture entre ces deux modalités. À ces fins, une méthode de recalage à l’aide d’un modèle articulé est proposée. Cette méthode a été comparée avec un recalage rigide en calculant l’erreur sur des points de repère, ainsi qu’en calculant la différence entre l’angle de Cobb avant et après recalage. Une validation additionelle de la méthode de recalage présentée ici se trouve dans l’annexe A. Ce travail servira de première étape dans la fusion des images RM, RX et TP du tronc complet. Donc, cet article vérifie l’hypothèse 1 décrite dans la section 3.2.1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new approach for reconstructing a patient-specific shape model and internal relative intensity distribution of the proximal femur from a limited number (e.g., 2) of calibrated C-arm images or X-ray radiographs. Our approach uses independent shape and appearance models that are learned from a set of training data to encode the a priori information about the proximal femur. An intensity-based non-rigid 2D-3D registration algorithm is then proposed to deformably fit the learned models to the input images. The fitting is conducted iteratively by minimizing the dissimilarity between the input images and the associated digitally reconstructed radiographs of the learned models together with regularization terms encoding the strain energy of the forward deformation and the smoothness of the inverse deformation. Comprehensive experiments conducted on images of cadaveric femurs and on clinical datasets demonstrate the efficacy of the present approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2D-3D registration of pre-operative 3D volumetric data with a series of calibrated and undistorted intra-operative 2D projection images has shown great potential in CT-based surgical navigation because it obviates the invasive procedure of the conventional registration methods. In this study, a recently introduced spline-based multi-resolution 2D-3D image registration algorithm has been adapted together with a novel least-squares normalized pattern intensity (LSNPI) similarity measure for image guided minimally invasive spine surgery. A phantom and a cadaver together with their respective ground truths were specially designed to experimentally assess possible factors that may affect the robustness, accuracy, or efficiency of the registration. Our experiments have shown that it is feasible for the assessed 2D-3D registration algorithm to achieve sub-millimeter accuracy in a realistic setup in less than one minute.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a method for DRR generation as well as for volume gradients projection using hardware accelerated 2D texture mapping and accumulation buffering and demonstrates its application in 2D-3D registration of X-ray fluoroscopy to CT images. The robustness of the present registration scheme are guaranteed by taking advantage of a coarse-to-fine processing of the volume/image pyramids based on cubic B-splines. A human cadaveric spine specimen together with its ground truth was used to compare the present scheme with a purely software-based scheme in three aspects: accuracy, speed, and capture ranges. Our experiments revealed an equivalent accuracy and capture ranges but with much shorter registration time with the present scheme. More specifically, the results showed 0.8 mm average target registration error, 55 second average execution time per registration, and 10 mm and 10° capture ranges for the present scheme when tested on a 3.0 GHz Pentium 4 computer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Similarity measure is one of the main factors that affect the accuracy of intensity-based 2D/3D registration of X-ray fluoroscopy to CT images. Information theory has been used to derive similarity measure for image registration leading to the introduction of mutual information, an accurate similarity measure for multi-modal and mono-modal image registration tasks. However, it is known that the standard mutual information measure only takes intensity values into account without considering spatial information and its robustness is questionable. Previous attempt to incorporate spatial information into mutual information either requires computing the entropy of higher dimensional probability distributions, or is not robust to outliers. In this paper, we show how to incorporate spatial information into mutual information without suffering from these problems. Using a variational approximation derived from the Kullback-Leibler bound, spatial information can be effectively incorporated into mutual information via energy minimization. The resulting similarity measure has a least-squares form and can be effectively minimized by a multi-resolution Levenberg-Marquardt optimizer. Experimental results are presented on datasets of two applications: (a) intra-operative patient pose estimation from a few (e.g. 2) calibrated fluoroscopic images, and (b) post-operative cup alignment estimation from single X-ray radiograph with gonadal shielding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, the authors evaluate a merit function for 2D/3D registration called stochastic rank correlation (SRC). SRC is characterized by the fact that differences in image intensity do not influence the registration result; it therefore combines the numerical advantages of cross correlation (CC)-type merit functions with the flexibility of mutual-information-type merit functions. The basic idea is that registration is achieved on a random subset of the image, which allows for an efficient computation of Spearman's rank correlation coefficient. This measure is, by nature, invariant to monotonic intensity transforms in the images under comparison, which renders it an ideal solution for intramodal images acquired at different energy levels as encountered in intrafractional kV imaging in image-guided radiotherapy. Initial evaluation was undertaken using a 2D/3D registration reference image dataset of a cadaver spine. Even with no radiometric calibration, SRC shows a significant improvement in robustness and stability compared to CC. Pattern intensity, another merit function that was evaluated for comparison, gave rather poor results due to its limited convergence range. The time required for SRC with 5% image content compares well to the other merit functions; increasing the image content does not significantly influence the algorithm accuracy. The authors conclude that SRC is a promising measure for 2D/3D registration in IGRT and image-guided therapy in general.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a non-rigid free-from 2D-3D registration approach using statistical deformation model (SDM). In our approach the SDM is first constructed from a set of training data using a non-rigid registration algorithm based on b-spline free-form deformation to encode a priori information about the underlying anatomy. A novel intensity-based non-rigid 2D-3D registration algorithm is then presented to iteratively fit the 3D b-spline-based SDM to the 2D X-ray images of an unseen subject, which requires a computationally expensive inversion of the instantiated deformation in each iteration. In this paper, we propose to solve this challenge with a fast B-spline pseudo-inversion algorithm that is implemented on graphics processing unit (GPU). Experiments conducted on C-arm and X-ray images of cadaveric femurs demonstrate the efficacy of the present approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study extends a previous research concerning intervertebral motion registration by means of 2D dynamic fluoroscopy to obtain a more comprehensive 3D description of vertebral kinematics. The problem of estimating the 3D rigid pose of a CT volume of a vertebra from its 2D X-ray fluoroscopy projection is addressed. 2D-3D registration is obtained maximising a measure of similarity between Digitally Reconstructed Radiographs (obtained from the CT volume) and real fluoroscopic projection. X-ray energy correction was performed. To assess the method a calibration model was realised a sheep dry vertebra was rigidly fixed to a frame of reference including metallic markers. Accurate measurement of 3D orientation was obtained via single-camera calibration of the markers and held as true 3D vertebra position; then, vertebra 3D pose was estimated and results compared. Error analysis revealed accuracy of the order of 0.1 degree for the rotation angles of about 1mm for displacements parallel to the fluoroscopic plane, and of order of 10mm for the orthogonal displacement. © 2010 P. Bifulco et al.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we present an extension of the iterative closest point (ICP) algorithm that simultaneously registers multiple 3D scans. While ICP fails to utilize the multiview constraints available, our method exploits the information redundancy in a set of 3D scans by using the averaging of relative motions. This averaging method utilizes the Lie group structure of motions, resulting in a 3D registration method that is both efficient and accurate. In addition, we present two variants of our approach, i.e., a method that solves for multiview 3D registration while obeying causality and a transitive correspondence variant that efficiently solves the correspondence problem across multiple scans. We present experimental results to characterize our method and explain its behavior as well as those of some other multiview registration methods in the literature. We establish the superior accuracy of our method in comparison to these multiview methods with registration results on a set of well-known real datasets of 3D scans.