874 resultados para 3D object recognition system
Resumo:
In this project, we propose the implementation of a 3D object recognition system which will be optimized to operate under demanding time constraints. The system must be robust so that objects can be recognized properly in poor light conditions and cluttered scenes with significant levels of occlusion. An important requirement must be met: the system must exhibit a reasonable performance running on a low power consumption mobile GPU computing platform (NVIDIA Jetson TK1) so that it can be integrated in mobile robotics systems, ambient intelligence or ambient assisted living applications. The acquisition system is based on the use of color and depth (RGB-D) data streams provided by low-cost 3D sensors like Microsoft Kinect or PrimeSense Carmine. The range of algorithms and applications to be implemented and integrated will be quite broad, ranging from the acquisition, outlier removal or filtering of the input data and the segmentation or characterization of regions of interest in the scene to the very object recognition and pose estimation. Furthermore, in order to validate the proposed system, we will create a 3D object dataset. It will be composed by a set of 3D models, reconstructed from common household objects, as well as a handful of test scenes in which those objects appear. The scenes will be characterized by different levels of occlusion, diverse distances from the elements to the sensor and variations on the pose of the target objects. The creation of this dataset implies the additional development of 3D data acquisition and 3D object reconstruction applications. The resulting system has many possible applications, ranging from mobile robot navigation and semantic scene labeling to human-computer interaction (HCI) systems based on visual information.
Resumo:
A persistent issue of debate in the area of 3D object recognition concerns the nature of the experientially acquired object models in the primate visual system. One prominent proposal in this regard has expounded the use of object centered models, such as representations of the objects' 3D structures in a coordinate frame independent of the viewing parameters [Marr and Nishihara, 1978]. In contrast to this is another proposal which suggests that the viewing parameters encountered during the learning phase might be inextricably linked to subsequent performance on a recognition task [Tarr and Pinker, 1989; Poggio and Edelman, 1990]. The 'object model', according to this idea, is simply a collection of the sample views encountered during training. Given that object centered recognition strategies have the attractive feature of leading to viewpoint independence, they have garnered much of the research effort in the field of computational vision. Furthermore, since human recognition performance seems remarkably robust in the face of imaging variations [Ellis et al., 1989], it has often been implicitly assumed that the visual system employs an object centered strategy. In the present study we examine this assumption more closely. Our experimental results with a class of novel 3D structures strongly suggest the use of a view-based strategy by the human visual system even when it has the opportunity of constructing and using object-centered models. In fact, for our chosen class of objects, the results seem to support a stronger claim: 3D object recognition is 2D view-based.
Resumo:
In this paper, a novel cortex-inspired feed-forward hierarchical object recognition system based on complex wavelets is proposed and tested. Complex wavelets contain three key properties for object representation: shift invariance, which enables the extraction of stable local features; good directional selectivity, which simplifies the determination of image orientations; and limited redundancy, which allows for efficient signal analysis using the multi-resolution decomposition offered by complex wavelets. In this paper, we propose a complete cortex-inspired object recognition system based on complex wavelets. We find that the implementation of the HMAX model for object recognition in [1, 2] is rather over-complete and includes too much redundant information and processing. We have optimized the structure of the model to make it more efficient. Specifically, we have used the Caltech 5 standard dataset to compare with Serre's model in [2] (which employs Gabor filter bands). Results demonstrate that the complex wavelet model achieves a speed improvement of about 4 times over the Serre model and gives comparable recognition performance. © 2011 IEEE.
Resumo:
We present Multi Scale Shape Index (MSSI), a novel feature for 3D object recognition. Inspired by the scale space filtering theory and Shape Index measure proposed by Koenderink & Van Doorn [6], this feature associates different forms of shape, such as umbilics, saddle regions, parabolic regions to a real valued index. This association is useful for representing an object based on its constituent shape forms. We derive closed form scale space equations which computes a characteristic scale at each 3D point in a point cloud without an explicit mesh structure. This characteristic scale is then used to estimate the Shape Index. We quantitatively evaluate the robustness and repeatability of the MSSI feature for varying object scales and changing point cloud density. We also quantify the performance of MSSI for object category recognition on a publicly available dataset. © 2013 Springer-Verlag.
Resumo:
This paper describes the main features of a view-based model of object recognition. The model tries to capture general properties to be expected in a biological architecture for object recognition. The basic module is a regularization network in which each of the hidden units is broadly tuned to a specific view of the object to be recognized.
Resumo:
Many 3D objects in the world around us are strongly constrained. For instance, not only cultural artifacts but also many natural objects are bilaterally symmetric. Thoretical arguments suggest and psychophysical experiments confirm that humans may be better in the recognition of symmetric objects. The hypothesis of symmetry-induced virtual views together with a network model that successfully accounts for human recognition of generic 3D objects leads to predictions that we have verified with psychophysical experiments.
Resumo:
There is evidence for the late development in humans of configural face and animal recognition. We show that the recognition of artificial three-dimensional (3D) objects from part configurations develops similarly late. We also demonstrate that the cross-modal integration of object information reinforces the development of configural recognition more than the intra-modal integration does. Multimodal object representations in the brain may therefore play a role in configural object recognition. © 2003 Elsevier B.V. All rights reserved.
Resumo:
A key problem in object recognition is selection, namely, the problem of identifying regions in an image within which to start the recognition process, ideally by isolating regions that are likely to come from a single object. Such a selection mechanism has been found to be crucial in reducing the combinatorial search involved in the matching stage of object recognition. Even though selection is of help in recognition, it has largely remained unsolved because of the difficulty in isolating regions belonging to objects under complex imaging conditions involving occlusions, changing illumination, and object appearances. This thesis presents a novel approach to the selection problem by proposing a computational model of visual attentional selection as a paradigm for selection in recognition. In particular, it proposes two modes of attentional selection, namely, attracted and pay attention modes as being appropriate for data and model-driven selection in recognition. An implementation of this model has led to new ways of extracting color, texture and line group information in images, and their subsequent use in isolating areas of the scene likely to contain the model object. Among the specific results in this thesis are: a method of specifying color by perceptual color categories for fast color region segmentation and color-based localization of objects, and a result showing that the recognition of texture patterns on model objects is possible under changes in orientation and occlusions without detailed segmentation. The thesis also presents an evaluation of the proposed model by integrating with a 3D from 2D object recognition system and recording the improvement in performance. These results indicate that attentional selection can significantly overcome the computational bottleneck in object recognition, both due to a reduction in the number of features, and due to a reduction in the number of matches during recognition using the information derived during selection. Finally, these studies have revealed a surprising use of selection, namely, in the partial solution of the pose of a 3D object.
Resumo:
In this paper, we propose a new scheme for omnidirectional object-recognition in free space. The proposed scheme divides above problem into several onmidirectional object-recognition with different depression angles. An onmidirectional object-recognition system with oblique observation directions based on a new recognition theory-Biomimetic Pattern Recognition (BPR) is discussed in detail. Based on it, we can get the size of training samples in the onmidirectional object-recognition system in free space. Omnidirection ally cognitive tests were done on various kinds of animal models of rather similar shapes. For the total 8400 tests, the correct recognition rate is 99.89%. The rejection rate is 0.11% and on the condition of zero error rates. Experimental results are presented to show that the proposed approach outperforms three types of SVMs with either a three degree polynomial kernel or a radial basis function kernel.
Resumo:
This paper sketches a hypothetical cortical architecture for visual 3D object recognition based on a recent computational model. The view-centered scheme relies on modules for learning from examples, such as Hyperbf-like networks. Such models capture a class of explanations we call Memory-Based Models (MBM) that contains sparse population coding, memory-based recognition, and codebooks of prototypes. Unlike the sigmoidal units of some artificial neural networks, the units of MBMs are consistent with the description of cortical neurons. We describe how an example of MBM may be realized in terms of cortical circuitry and biophysical mechanisms, consistent with psychophysical and physiological data.
Resumo:
The inferior temporal cortex (IT) of monkeys is thought to play an essential role in visual object recognition. Inferotemporal neurons are known to respond to complex visual stimuli, including patterns like faces, hands, or other body parts. What is the role of such neurons in object recognition? The present study examines this question in combined psychophysical and electrophysiological experiments, in which monkeys learned to classify and recognize novel visual 3D objects. A population of neurons in IT were found to respond selectively to such objects that the monkeys had recently learned to recognize. A large majority of these cells discharged maximally for one view of the object, while their response fell off gradually as the object was rotated away from the neuron"s preferred view. Most neurons exhibited orientation-dependent responses also during view-plane rotations. Some neurons were found tuned around two views of the same object, while a very small number of cells responded in a view- invariant manner. For five different objects that were extensively used during the training of the animals, and for which behavioral performance became view-independent, multiple cells were found that were tuned around different views of the same object. No selective responses were ever encountered for views that the animal systematically failed to recognize. The results of our experiments suggest that neurons in this area can develop a complex receptive field organization as a consequence of extensive training in the discrimination and recognition of objects. Simple geometric features did not appear to account for the neurons" selective responses. These findings support the idea that a population of neurons -- each tuned to a different object aspect, and each showing a certain degree of invariance to image transformations -- may, as an assembly, encode complex 3D objects. In such a system, several neurons may be active for any given vantage point, with a single unit acting like a blurred template for a limited neighborhood of a single view.
Resumo:
While navigating in an environment, a vision system has to be able to recognize where it is and what the main objects in the scene are. In this paper we present a context-based vision system for place and object recognition. The goal is to identify familiar locations (e.g., office 610, conference room 941, Main Street), to categorize new environments (office, corridor, street) and to use that information to provide contextual priors for object recognition (e.g., table, chair, car, computer). We present a low-dimensional global image representation that provides relevant information for place recognition and categorization, and how such contextual information introduces strong priors that simplify object recognition. We have trained the system to recognize over 60 locations (indoors and outdoors) and to suggest the presence and locations of more than 20 different object types. The algorithm has been integrated into a mobile system that provides real-time feedback to the user.
Resumo:
Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. In cortical area V1 exist double-opponent colour blobs, also simple, complex and end-stopped cells which provide input for a multiscale line/edge representation, keypoints for dynamic feature routine, and saliency maps for Focus-of-Attention.