968 resultados para 3D local shape descriptor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feature vectors can be anything from simple surface normals to more complex feature descriptors. Feature extraction is important to solve various computer vision problems: e.g. registration, object recognition and scene understanding. Most of these techniques cannot be computed online due to their complexity and the context where they are applied. Therefore, computing these features in real-time for many points in the scene is impossible. In this work, a hardware-based implementation of 3D feature extraction and 3D object recognition is proposed to accelerate these methods and therefore the entire pipeline of RGBD based computer vision systems where such features are typically used. The use of a GPU as a general purpose processor can achieve considerable speed-ups compared with a CPU implementation. In this work, advantageous results are obtained using the GPU to accelerate the computation of a 3D descriptor based on the calculation of 3D semi-local surface patches of partial views. This allows descriptor computation at several points of a scene in real-time. Benefits of the accelerated descriptor have been demonstrated in object recognition tasks. Source code will be made publicly available as contribution to the Open Source Point Cloud Library.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports a novel region-based shape descriptor based on orthogonal Legendre moments. The preprocessing steps for invariance improvement of the proposed Improved Legendre Moment Descriptor (ILMD) are discussed. The performance of the ILMD is compared to the MPEG-7 approved region shape descriptor, angular radial transformation descriptor (ARTD), and the widely used Zernike moment descriptor (ZMD). Set B of the MPEG-7 CE-1 contour database and all the datasets of the MPEG-7 CE-2 region database were used for experimental validation. The average normalized modified retrieval rate (ANMRR) and precision- recall pair were employed for benchmarking the performance of the candidate descriptors. The ILMD has lower ANMRR values than ARTD for most of the datasets, and ARTD has a lower value compared to ZMD. This indicates that overall performance of the ILMD is better than that of ARTD and ZMD. This result is confirmed by the precision-recall test where ILMD was found to have better precision rates for most of the datasets tested. Besides retrieval accuracy, ILMD is more compact than ARTD and ZMD. The descriptor proposed is useful as a generic shape descriptor for content-based image retrieval (CBIR) applications

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose a novel method for shape analysis called HTS (Hough Transform Statistics), which uses statistics from Hough Transform space in order to characterize the shape of objects in digital images. Experimental results showed that the HTS descriptor is robust and presents better accuracy than some traditional shape description methods. Furthermore, HTS algorithm has linear complexity, which is an important requirement for content based image retrieval from large databases. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the creation of 3D statistical shape models of the knee bones and their use to embed information into a segmentation system for MRIs of the knee. We propose utilising the strong spatial relationship between the cartilages and the bones in the knee by embedding this information into the created models. This information can then be used to automate the initialisation of segmentation algorithms for the cartilages. The approach used to automatically generate the 3D statistical shape models of the bones is based on the point distribution model optimisation framework of Davies. Our implementation of this scheme uses a parameterized surface extraction algorithm, which is used as the basis for the optimisation scheme that automatically creates the 3D statistical shape models. The current approach is illustrated by generating 3D statistical shape models of the patella, tibia and femoral bones from a segmented database of the knee. The use of these models to embed spatial relationship information to aid in the automation of segmentation algorithms for the cartilages is then illustrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an automated segmentation approach for MR images of the knee bones. The bones are the first stage of a segmentation system for the knee, primarily aimed at the automated segmentation of the cartilages. The segmentation is performed using 3D active shape models (ASM), which are initialized using an affine registration to an atlas. The 3D ASMs of the bones are created automatically using a point distribution model optimization scheme. The accuracy and robustness of the segmentation approach was experimentally validated using an MR database of fat suppressed spoiled gradient recall images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. METHODS AND MATERIALS: Manual and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. RESULTS: We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. CONCLUSION: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a statistical image-based shape + structure model for Bayesian visual hull reconstruction and 3D structure inference. The 3D shape of a class of objects is represented by sets of contours from silhouette views simultaneously observed from multiple calibrated cameras. Bayesian reconstructions of new shapes are then estimated using a prior density constructed with a mixture model and probabilistic principal components analysis. We show how the use of a class-specific prior in a visual hull reconstruction can reduce the effect of segmentation errors from the silhouette extraction process. The proposed method is applied to a data set of pedestrian images, and improvements in the approximate 3D models under various noise conditions are shown. We further augment the shape model to incorporate structural features of interest; unknown structural parameters for a novel set of contours are then inferred via the Bayesian reconstruction process. Model matching and parameter inference are done entirely in the image domain and require no explicit 3D construction. Our shape model enables accurate estimation of structure despite segmentation errors or missing views in the input silhouettes, and works even with only a single input view. Using a data set of thousands of pedestrian images generated from a synthetic model, we can accurately infer the 3D locations of 19 joints on the body based on observed silhouette contours from real images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Proper delineation of ocular anatomy in 3D imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic Resonance Imaging (MRI) is nowadays utilized in clinical practice for the diagnosis confirmation and treatment planning of retinoblastoma in infants, where it serves as a source of information, complementary to the Fundus or Ultrasound imaging. Here we present a framework to fully automatically segment the eye anatomy in the MRI based on 3D Active Shape Models (ASM), we validate the results and present a proof of concept to automatically segment pathological eyes. Material and Methods: Manual and automatic segmentation were performed on 24 images of healthy children eyes (3.29±2.15 years). Imaging was performed using a 3T MRI scanner. The ASM comprises the lens, the vitreous humor, the sclera and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens and the optic nerve, then aligning the model and fitting it to the patient. We validated our segmentation method using a leave-one-out cross validation. The segmentation results were evaluated by measuring the overlap using the Dice Similarity Coefficient (DSC) and the mean distance error. Results: We obtained a DSC of 94.90±2.12% for the sclera and the cornea, 94.72±1.89% for the vitreous humor and 85.16±4.91% for the lens. The mean distance error was 0.26±0.09mm. The entire process took 14s on average per eye. Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor and the lens using MRI. We additionally present a proof of concept for fully automatically segmenting pathological eyes. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A certain type of bacterial inclusion, known as a bacterial microcompartment, was recently identified and imaged through cryo-electron tomography. A reconstructed 3D object from single-axis limited angle tilt-series cryo-electron tomography contains missing regions and this problem is known as the missing wedge problem. Due to missing regions on the reconstructed images, analyzing their 3D structures is a challenging problem. The existing methods overcome this problem by aligning and averaging several similar shaped objects. These schemes work well if the objects are symmetric and several objects with almost similar shapes and sizes are available. Since the bacterial inclusions studied here are not symmetric, are deformed, and show a wide range of shapes and sizes, the existing approaches are not appropriate. This research develops new statistical methods for analyzing geometric properties, such as volume, symmetry, aspect ratio, polyhedral structures etc., of these bacterial inclusions in presence of missing data. These methods work with deformed and non-symmetric varied shaped objects and do not necessitate multiple objects for handling the missing wedge problem. The developed methods and contributions include: (a) an improved method for manual image segmentation, (b) a new approach to 'complete' the segmented and reconstructed incomplete 3D images, (c) a polyhedral structural distance model to predict the polyhedral shapes of these microstructures, (d) a new shape descriptor for polyhedral shapes, named as polyhedron profile statistic, and (e) the Bayes classifier, linear discriminant analysis and support vector machine based classifiers for supervised incomplete polyhedral shape classification. Finally, the predicted 3D shapes for these bacterial microstructures belong to the Johnson solids family, and these shapes along with their other geometric properties are important for better understanding of their chemical and biological characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most significant research topics in computer vision is object detection. Most of the reported object detection results localise the detected object within a bounding box, but do not explicitly label the edge contours of the object. Since object contours provide a fundamental diagnostic of object shape, some researchers have initiated work on linear contour feature representations for object detection and localisation. However, linear contour feature-based localisation is highly dependent on the performance of linear contour detection within natural images, and this can be perturbed significantly by a cluttered background. In addition, the conventional approach to achieving rotation-invariant features is to rotate the feature receptive field to align with the local dominant orientation before computing the feature representation. Grid resampling after rotation adds extra computational cost and increases the total time consumption for computing the feature descriptor. Though it is not an expensive process if using current computers, it is appreciated that if each step of the implementation is faster to compute especially when the number of local features is increasing and the application is implemented on resource limited ”smart devices”, such as mobile phones, in real-time. Motivated by the above issues, a 2D object localisation system is proposed in this thesis that matches features of edge contour points, which is an alternative method that takes advantage of the shape information for object localisation. This is inspired by edge contour points comprising the basic components of shape contours. In addition, edge point detection is usually simpler to achieve than linear edge contour detection. Therefore, the proposed localization system could avoid the need for linear contour detection and reduce the pathological disruption from the image background. Moreover, since natural images usually comprise many more edge contour points than interest points (i.e. corner points), we also propose new methods to generate rotation-invariant local feature descriptors without pre-rotating the feature receptive field to improve the computational efficiency of the whole system. In detail, the 2D object localisation system is achieved by matching edge contour points features in a constrained search area based on the initial pose-estimate produced by a prior object detection process. The local feature descriptor obtains rotation invariance by making use of rotational symmetry of the hexagonal structure. Therefore, a set of local feature descriptors is proposed based on the hierarchically hexagonal grouping structure. Ultimately, the 2D object localisation system achieves a very promising performance based on matching the proposed features of edge contour points with the mean correct labelling rate of the edge contour points 0.8654 and the mean false labelling rate 0.0314 applied on the data from Amsterdam Library of Object Images (ALOI). Furthermore, the proposed descriptors are evaluated by comparing to the state-of-the-art descriptors and achieve competitive performances in terms of pose estimate with around half-pixel pose error.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.