902 resultados para 3D detector


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The 1st chapter of this work presents the different experiments and collaborations in which I am involved during my PhD studies of Physics. Following those descriptions, the 2nd chapter is dedicated to how the radiation affects the silicon sensors, as well as some experimental measurements carried out at CERN (Geneve, Schwitzerland) and IFIC (Valencia, Spain) laboratories. Besides the previous investigation results, this chapter includes the most recent scientific papers appeared in the latest RD50 (Research & Development #50) Status Report, published in January 2007, as well as some others published this year. The 3rd and 4th are dedicated to the simulation of the electrical behavior of solid state detectors. In chapter 3 are reported the results obtained for the illumination of edgeless detectors irradiated at different fluences, in the framework of the TOSTER Collaboration. The 4th chapter reports about simulation design, simulation and fabrication of a novel 3D detector developed at CNM for ions detection in the future ITER fusion reactor. This chapter will be extended with irradiation simulations and experimental measurements in my PhD Thesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis describes the development of advanced silicon radiation detectors and their characterization by simulations, used in the work for searching elementary particles in the European Organization for Nuclear Research, CERN. Silicon particle detectors will face extremely harsh radiation in the proposed upgrade of the Large Hadron Collider, the future high-energy physics experiment Super-LHC. The increase in the maximal fluence and the beam luminosity up to 1016 neq / cm2 and 1035 cm-2s-1 will require detectors with a dramatic improvement in radiation hardness, when such a fluence will be far beyond the operational limits of the present silicon detectors. The main goals of detector development concentrate on minimizing the radiation degradation. This study contributes mainly to the device engineering technology for developing more radiation hard particle detectors with better characteristics. Also the defect engineering technology is discussed. In the nearest region of the beam in Super-LHC, the only detector choice is 3D detectors, or alternatively replacing other types of detectors every two years. The interest in the 3D silicon detectors is continuously growing because of their many advantages as compared to conventional planar detectors: the devices can be fully depleted at low bias voltages, the speed of the charge collection is high, and the collection distances are about one order of magnitude less than those of planar technology strip and pixel detectors with electrodes limited to the detector surface. Also the 3D detectors exhibit high radiation tolerance, and thus the ability of the silicon detectors to operate after irradiation is increased. Two parameters, full depletion voltage and electric field distribution, is discussed in more detail in this study. The full depletion of the detector is important because the only depleted area in the detector is active for the particle tracking. Similarly, the high electric field in the detector makes the detector volume sensitive, while low-field areas are non-sensitive to particles. This study shows the simulation results of full depletion voltage and the electric field distribution for the various types of 3D detectors. First, the 3D detector with the n-type substrate and partial-penetrating p-type electrodes are researched. A detector of this type has a low electric field on the pixel side and it suffers from type inversion. Next, the substrate is changed to p-type and the detectors having electrodes with one doping type and the dual doping type are examined. The electric field profile in a dual-column 3D Si detector is more uniform than that in the single-type column 3D detector. The dual-column detectors are the best in radiation hardness because of their low depletion voltages and short drift distances.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

X-Ray Powder Diffraction (XRPD) laboratory is a facility placed at Servicios Centrales de apoyo a la Investigación (SCAI) at University of Malaga (UMA) http://www.scai.uma.es/. This facility has three XRPD diffractometers and a diffractometer to measure high-resolution thin-films. X´Pert PRO MPD from PANalytical. This is a bragg-brentano (theta/2theta) with reflection geometry diffractometer which allows to obtain high resolution XRPD data with strictly monochromatic CuKα1 radiation (λ=1.54059Å) [Ge(111) primary monochromator] and an automatic sample charger. Moreover, it has parallel monochromatic CuKα1 radiation (λ=1.54059Å) with an hybrid Ge(220) monochromator for capillary and multiproposal (bulk samples up to 1 Kg) sample holders. The HTK1200N chamber from Anton Paar allows collecting high resolution high temperature patterns. EMPYREAN from PANalytical. This diffractometer works in reflection and transmission geometries with theta/theta goniometer, using CuKα1,2 radiation (λ=1.5418Å), a focusing X-ray mirror and a ultra-fast PIXCEL 3D detector with 1D and 2D collection data modes (microstructural and preferred orientation analysis). Moreover, the TTK450N chamber allows low temperature and up to 450ºC studies. A D8 ADVANCE (BRUKER) was installed in April 2014. It is the first diffractometer in Europe equipped with a Johansson Ge(111) primary monochromator, which gives a strictly monochromatic Mo radiation (λ=0.7093 Å) [1]. It works in transmission mode (with a sample charger) with this high resolution configuration. XRPD data suitable for PDF (Pair Distribution Function) analysis can be collected with a capillary sample holder, due to the high energy and high resolution capabilities of this diffractometer. Moreover, it has a humidity chamber MHC-trans from Anton Paar working on transmission mode with MoKα1 (measurements can be collected at 5 to 95% of relative humidity (from 20 to 80 ºC) and up to 150ºC [2]). Furthermore, this diffractometer also has a reaction chamber XRK900 from Anton Paar (which uses CuKα1,2 radiation in reflection mode), which allows data collection from room temperature to 900ºC with up to 10 bar of different gases. Finally, a D8 DISVOVER A25 from BRUKER was installed on December 2014. It has a five axis Euler cradler and optics devices suitable for high resolution thin film data collection collected in in-plane and out-of-plane modes. To sum up, high-resolution thin films, microstructural, rocking-curve, Small Angle X-ray Scattering (SAXS), Grazing incident SAXS (GISAXS), Ultra Grazing incident diffraction (Ultra-GID) and microdiffraction measurements can be performed with the appropriated optics and sample holders. [1] L. León-Reina, M. García-Maté, G. Álvarez-Pinazo, I. Santacruz, O. Vallcorba, A.G. De la Torre, M.A.G. Aranda “Accuracy in Rietveld quantitative phase analysis: a comparative study of strictly monochromatic Mo and Cu radiations” J. Appl. Crystallogr. 2016, 49, 722-735. [2] J. Aríñez-Soriano, J. Albalad, C. Vila-Parrondo, J. Pérez-Carvajal, S. Rodríguez-Hermida, A. Cabeza, F. Busqué, J. Juanhuix, I. Imaz, Daniel Maspoch “Single-crystal and humidity-controlled powder diffraction study of the breathing effect in a metal-organic framework upon water adsorption/desorption” Chem. Commun., 2016, DOI: 10.1039/C6CC02908F.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The accuracy of a 3D reconstruction using laser scanners is significantly determined by the detection of the laser stripe. Since the energy pattern of such a stripe corresponds to a Gaussian profile, it makes sense to detect the point of maximum light intensity (or peak) by computing the zero-crossing point of the first derivative of such Gaussian profile. However, because noise is present in every physical process, such as electronic image formation, it is not sensitive to perform the derivative of the image of the stripe in almost any situation, unless a previous filtering stage is done. Considering that stripe scanning is an inherently row-parallel process, every row of a given image must be processed independently in order to compute its corresponding peak position in the row. This paper reports on the use of digital filtering techniques in order to cope with the scanning of different surfaces with different optical properties and different noise levels, leading to the proposal of a more accurate numerical peak detector, even at very low signal-to-noise ratios

Relevância:

30.00% 30.00%

Publicador:

Resumo:

3D dose reconstruction is a verification of the delivered absorbed dose. Our aim was to describe and evaluate a 3D dose reconstruction method applied to phantoms in the context of narrow beams. A solid water phantom and a phantom containing a bone-equivalent material were irradiated on a 6 MV linac. The transmitted dose was measured by using one array of a 2D ion chamber detector. The dose reconstruction was obtained by an iterative algorithm. A phantom set-up error and organ interfraction motion were simulated to test the algorithm sensitivity. In all configurations convergence was obtained within three iterations. A local reconstructed dose agreement of at least 3% / 3mm with respect to the planned dose was obtained, except in a few points of the penumbra. The reconstructed primary fluences were consistent with the planned ones, which validates the whole reconstruction process. The results validate our method in a simple geometry and for narrow beams. The method is sensitive to a set-up error of a heterogeneous phantom and interfraction heterogeneous organ motion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large Hadron Collider (LHC) is the main particle accelerator at CERN. LHC is created with main goal to search elementary particles and help science investigate our universe. Radiation in LHC is caused by charged particles circular acceleration, therefore detectors tracing particles in existed severe conditions during the experiments must be radiation tolerant. Moreover, further upgrade of luminosity (up to 1035 cm-2s-1) requires development of particle detector’s structure. This work is dedicated to show the new type 3D stripixel detector with serious structural improvement. The new type of radiation-hard detector has a three-dimensional (3D) array of the p+ and n+ electrodes that penetrate into the detector bulk. The electrons and holes are then collected at oppositely biased electrodes. Proposed 3D stripixel detector demonstrates that full depletion voltage is lower that that for planar detectors. Low depletion voltage is one of the main advantages because only depleted part of the device is active are. Because of small spacing between electrodes, charge collection distances are smaller which results in high speed of the detector’s response. In this work is also briefly discussed dual-column type detectors, meaning consisting both n+ and p+ type columnar electrodes in its structure, and was declared that dual-column detectors show better electric filed distribution then single sided radiation detectors. The dead space or in other words low electric field region in significantly suppressed. Simulations were carried out by using Atlas device simulation software. As a simulation results in this work are represented the electric field distribution under different bias voltages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid-state silicon detectors have replaced conventional ones in almost all recent high-energy physics experiments. Pixel silicon sensors don't have any alternative in the area near the interaction point because of their high resolution and fast operation speed. However, present detectors hardly withstand high radiation doses. Forthcoming upgrade of the LHC in 2014 requires development of a new generation of pixel detectors which will be able to operate under ten times increased luminosity. A planar fabrication technique has some physical limitations; an improvement of the radiation hardness will reduce sensitivity of a detector. In that case a 3D pixel detector seems to be the most promising device which can overcome these difficulties. The objective of this work was to model a structure of the 3D stripixel detector and to simulate electrical characteristics of the device. Silvaco Atlas software has been used for these purposes. The structures of single and double sided dual column detectors with active edges were described using special command language. Simulations of these detectors have shown that electric field inside an active area has more uniform distribution in comparison to the planar structure. A smaller interelectrode space leads to a stronger field and also decreases the collection time. This makes the new type of detectors more radiation resistant. Other discovered advantages are the lower full depletion voltage and increased charge collection efficiency. So the 3D stripixel detectors have demonstrated improved characteristics and will be a suitable replacement for the planar ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Corteo is a program that implements Monte Carlo (MC) method to simulate ion beam analysis (IBA) spectra of several techniques by following the ions trajectory until a sufficiently large fraction of them reach the detector to generate a spectrum. Hence, it fully accounts for effects such as multiple scattering (MS). Here, a version of Corteo is presented where the target can be a 2D or 3D image. This image can be derived from micrographs where the different compounds are identified, therefore bringing extra information into the solution of an IBA spectrum, and potentially significantly constraining the solution. The image intrinsically includes many details such as the actual surface or interfacial roughness, or actual nanostructures shape and distribution. This can for example lead to the unambiguous identification of structures stoichiometry in a layer, or at least to better constraints on their composition. Because MC computes in details the trajectory of the ions, it simulates accurately many of its aspects such as ions coming back into the target after leaving it (re-entry), as well as going through a variety of nanostructures shapes and orientations. We show how, for example, as the ions angle of incidence becomes shallower than the inclination distribution of a rough surface, this process tends to make the effective roughness smaller in a comparable 1D simulation (i.e. narrower thickness distribution in a comparable slab simulation). Also, in ordered nanostructures, target re-entry can lead to replications of a peak in a spectrum. In addition, bitmap description of the target can be used to simulate depth profiles such as those resulting from ion implantation, diffusion, and intermixing. Other improvements to Corteo include the possibility to interpolate the cross-section in angle-energy tables, and the generation of energy-depth maps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La miniaturització de la industria microelectrònica és un fet del tot inqüestionables i la tecnologia CMOS no n'és una excepció. En conseqüència la comunitat científica s'ha plantejat dos grans reptes: En primer lloc portar la tecnologia CMOS el més lluny possible ('Beyond CMOS') tot desenvolupant sistemes d'altes prestacions com microprocessadors, micro - nanosistemes o bé sistemes de píxels. I en segon lloc encetar una nova generació electrònica basada en tecnologies totalment diferents dins l'àmbit de les Nanotecnologies. Tots aquests avanços exigeixen una recerca i innovació constant en la resta d'àrees complementaries com són les d'encapsulat. L'encapsulat ha de satisfer bàsicament tres funcions: Interfície elèctrica del sistema amb l'exterior, Proporcionar un suport mecànic al sistema i Proporcionar un camí de dissipació de calor. Per tant, si tenim en compte que la majoria d'aquests dispositius d'altes prestacions demanden un alt nombre d'entrades i sortides, els mòduls multixip (MCMs) i la tecnologia flip chip es presenten com una solució molt interessant per aquests tipus de dispositiu. L'objectiu d'aquesta tesi és la de desenvolupar una tecnologia de mòduls multixip basada en interconnexions flip chip per a la integració de detectors de píxels híbrids, que inclou: 1) El desenvolupament d'una tecnologia de bumping basada en bumps de soldadura Sn/Ag eutèctics dipositats per electrodeposició amb un pitch de 50µm, i 2) El desenvolupament d'una tecnologia de vies d'or en silici que permet interconnectar i apilar xips verticalment (3D packaging) amb un pitch de 100µm. Finalment aquesta alta capacitat d'interconnexió dels encapsulats flip chip ha permès que sistemes de píxels tradicionalment monolítics puguin evolucionar cap a sistemes híbrids més compactes i complexes, i que en aquesta tesi s'ha vist reflectit transferint la tecnologia desenvolupada al camp de la física d'altes energies, en concret implantant el sistema de bump bonding d'un mamògraf digital. Addicionalment s'ha implantat també un dispositiu detector híbrid modular per a la reconstrucció d'imatges 3D en temps real, que ha donat lloc a una patent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] In this paper, we present a vascular tree model made with synthetic materials and which allows us to obtain images to make a 3D reconstruction.We have used PVC tubes of several diameters and lengths that will let us evaluate the accuracy of our 3D reconstruction. In order to calibrate the camera we have used a corner detector. Also we have used Optical Flow techniques to follow the points through the images going and going back. We describe two general techniques to extract a sequence of corresponding points from multiple views of an object. The resulting sequence of points will be used later to reconstruct a set of 3D points representing the object surfaces on the scene. We have made the 3D reconstruction choosing by chance a couple of images and we have calculated the projection error. After several repetitions, we have found the best 3D location for the point.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] In this paper, we present a vascular tree model made with synthetic materials and which allows us to obtain images to make a 3D reconstruction. In order to create this model, we have used PVC tubes of several diameters and lengths that will let us evaluate the accuracy of our 3D reconstruction. We have made the 3D reconstruction from a series of images that we have from our model and after we have calibrated the camera. In order to calibrate it we have used a corner detector. Also we have used Optical Flow techniques to follow the points through the images going and going back. Once we have the set of images where we have located a point, we have made the 3D reconstruction choosing by chance a couple of images and we have calculated the projection error. After several repetitions, we have found the best 3D location for the point.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a kernel density correlation based nonrigid point set matching method and shows its application in statistical model based 2D/3D reconstruction of a scaled, patient-specific model from an un-calibrated x-ray radiograph. In this method, both the reference point set and the floating point set are first represented using kernel density estimates. A correlation measure between these two kernel density estimates is then optimized to find a displacement field such that the floating point set is moved to the reference point set. Regularizations based on the overall deformation energy and the motion smoothness energy are used to constraint the displacement field for a robust point set matching. Incorporating this non-rigid point set matching method into a statistical model based 2D/3D reconstruction framework, we can reconstruct a scaled, patient-specific model from noisy edge points that are extracted directly from the x-ray radiograph by an edge detector. Our experiment conducted on datasets of two patients and six cadavers demonstrates a mean reconstruction error of 1.9 mm

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have analyzed the performance of a PET demonstrator formed by two sectors of four monolithic detector blocks placed face-to-face. Both front-end and read-out electronics have been evaluated by means of coincidence measurements using a rotating 22Na source placed at the center of the sectors in order to emulate the behavior of a complete full ring. A continuous training method based on neural network (NN) algorithms has been carried out to determine the entrance points over the surface of the detectors. Reconstructed images from 1 MBq 22Na point source and 22Na Derenzo phantom have been obtained using both filtered back projection (FBP) analytic methods and the OSEM 3D iterative algorithm available in the STIR software package [1]. Preliminary data on image reconstruction from a 22Na point source with Ø = 0.25 mm show spatial resolutions from 1.7 to 2.1 mm FWHM in the transverse plane. The results confirm the viability of this design for the development of a full-ring brain PET scanner compatible with magnetic resonance imaging for human studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In questa tesi sono stati analizzati alcuni metodi di ricerca per dati 3D. Viene illustrata una panoramica generale sul campo della Computer Vision, sullo stato dell’arte dei sensori per l’acquisizione e su alcuni dei formati utilizzati per la descrizione di dati 3D. In seguito è stato fatto un approfondimento sulla 3D Object Recognition dove, oltre ad essere descritto l’intero processo di matching tra Local Features, è stata fatta una focalizzazione sulla fase di detection dei punti salienti. In particolare è stato analizzato un Learned Keypoint detector, basato su tecniche di apprendimento di machine learning. Quest ultimo viene illustrato con l’implementazione di due algoritmi di ricerca di vicini: uno esauriente (K-d tree) e uno approssimato (Radial Search). Sono state riportate infine alcune valutazioni sperimentali in termini di efficienza e velocità del detector implementato con diversi metodi di ricerca, mostrando l’effettivo miglioramento di performance senza una considerabile perdita di accuratezza con la ricerca approssimata.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neutrino mass ordering and the leptonic CP violation phase are key parameters of the three-neutrino flavour mixing still to be determined. Measuring these parameters is the main goal of DUNE, a next generation Long Baseline neutrino experiment under construction in the United States. DUNE will feature a Near and a Far Detector site. An important component of the Near detector complex is the SAND apparatus, which will include GRAIN, a novel liquid Argon detector that aims at imaging neutrino interactions using scintillation light. For this purpose, an innovative optical readout system based on Coded Aperture Masks is under study. This thesis work is aimed at a first quantitative assessment of a 3D neutrino event reconstruction algorithm for GRAIN. The processing procedure is optimized and the reconstruction performance is evaluated. Promising results are obtained.