912 resultados para 3D Sensores


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de Mestrado em Engenharia Informática 2º Semestre, 2011/2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Eletrotécnica e Computadores

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neste trabalho é apresentado um método para medição de deslocamentos sem contato, utilizando sensores magnetoresistivos, os quais são sensibilizados pela variação do campo magnético produzido por um imã permanente em deslocamento no espaço. Os sensores magnetoresistivos possuem, internamente, uma ponte de Wheathestone, onde a resistência varia conforme varia o campo magnético, de modo que o circuito mais indicado para este caso é um amplificador e um filtro para cada sensor. O principal objetivo do trabalho é a obtenção de uma técnica para medir deslocamentos sem contato, e estender os resultados para medida de movimentos mandibulares. A montagem consiste de duas placas de celeron, distantes 30mm uma da outra e unidas por parafusos de polietileno. Em cada uma destas placas foram dispostos quatro sensores, num total de oito, sendo que para cada um deles existe um circuito de amplificação e filtragem do sinal de saída. Sob uma chapa de alumínio foi fixado este equipamento e uma mesa de calibração em 3D, a qual, após a obtenção da matriz de calibração, foi substituída por um emulador de movimento mandibular. Os parâmetros do modelo foram estimados através do método dos mínimos quadrados com auxílio do software Matlab, Release 12. Este software também foi utilizado para o sistema de aquisição de dados durante a realização dos experimentos. A imprecisão dos resultados obtidos na determinação dos deslocamentos, está na ordem de décimos de milímetros. O trabalho apresenta, também, o mapeamento do campo magnético do magneto utilizado nos experimentos através do software FEM2000 – Método de elementos finitos aplicado ao eletromagnetismo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to present a new methodology, based on vector and geometrical techniques, for determining the position of an intruder in a residence (3D problem). Initially, modifications in the electromagnetic responses of the environment, caused by movements of the trespasser, are detected. It is worth mentioning that slight movements are detected by high frequency components of the used pulse. The differences between the signals (before and after any movement) are used to define a sphere and ellipsoids, which are used for estimating the position of the invader. In this work, multiple radars are used in a cooperative manner. The multiple estimates obtained are used to determine a mean position and its standard deviation, introducing the concept of sphere of estimates. The electromagnetic simulations were performed by using the FDTD method. Results were obtained for single and double floor residences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biomagnetic techniques use different magnetic field detectors to measure parameters of the human physiology. Those techniques present the advantage of being noninvasive and radiation free. Among them we can show up the Superconducting Quantum Interference Device (SQUID), the Current Alternate Biosusceptometry (ACB) and, more recently, the employment of anisotropic magnetoresistive sensors. Those magnetic sensors have a low cost and good sensitivity to measure different physiological parameters using magnetic markers. The biomagnetic techniques have being used successfully through study on the characteristics of the gastrointestinal tract. Recent research, the magnetoresistors were used to evaluate the transit time and localization of magnetic sources in different parts of the gastrointestinal tract. The objective of this work is the characterization, with in vitro tests, of a biomagnetic instrumentation using two 3-axis magnetoresistors arranged in a gradiometric coplanar setup to evaluate esophageal transit time, analyze and compare the results of experimental signals and the magnetic theory, as well as evaluate the instrumentation gain with use of tri-axial sensor front to the mono-axial sensor. The instrumentation is composed by two three-axis sensing magnetometers, precision power supply and amplifier electronic circuits. The sensors fixed in a coplanar setup were separate by distance of 18 cm. The sensitivity tests had been carried through using a cylindrical magnet (ø = 4 mm and h = 4 mm) of neodymium-iron-boron (grid 35). The tests were done moving the permanent magnet on the sensors parallel axis, simulating the food transit in... (Complete abstract click electronic access below)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uno de los aspectos fundamentales en un sistema de cirugía guiada por imagen (CGI) es la localización del instrumental quirúrgico con respecto a la anatomía del paciente. Los sistemas basados en sensores ofrecen buenos niveles de precisión, pero son sensibles a distintas fuentes de ruido en el quirófano y contribuyen a la sobrecarga tecnológica del mismo. Una alternativa novedosa es analizar la imagen del vídeo endoscópico para llevar a cabo la detección y localización espacial del instrumental. Se presenta en este trabajo la validación de dos métodos, basados en el diámetro aparente y en la sección transversal del instrumental, para la localización espacial del instrumental a partir de los bordes y la posición 2D de la punta en la imagen. La validación, llevada a cabo en un simulador físico, se realiza comparando los resultados con el sistema Kinescan/IBV. Los resultados muestran para cada método un error medio de 12,7 y 12,8 mm respectivamente. La incorporación de estos algoritmos dentro del paradigma de navegación propuesto en el proyecto THEMIS permitirá al cirujano conocer la posición del instrumental de forma no intrusiva y transparente, sin necesidad de equipamiento adicional en el quirófano.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los sistemas de seguimiento mono-cámara han demostrado su notable capacidad para el análisis de trajectorias de objectos móviles y para monitorización de escenas de interés; sin embargo, tanto su robustez como sus posibilidades en cuanto a comprensión semántica de la escena están fuertemente limitadas por su naturaleza local y monocular, lo que los hace insuficientes para aplicaciones realistas de videovigilancia. El objetivo de esta tesis es la extensión de las posibilidades de los sistemas de seguimiento de objetos móviles para lograr un mayor grado de robustez y comprensión de la escena. La extensión propuesta se divide en dos direcciones separadas. La primera puede considerarse local, ya que está orientada a la mejora y enriquecimiento de las posiciones estimadas para los objetos móviles observados directamente por las cámaras del sistema; dicha extensión se logra mediante el desarrollo de un sistema multi-cámara de seguimiento 3D, capaz de proporcionar consistentemente las posiciones 3D de múltiples objetos a partir de las observaciones capturadas por un conjunto de sensores calibrados y con campos de visión solapados. La segunda extensión puede considerarse global, dado que su objetivo consiste en proporcionar un contexto global para relacionar las observaciones locales realizadas por una cámara con una escena de mucho mayor tamaño; para ello se propone un sistema automático de localización de cámaras basado en las trayectorias observadas de varios objetos móviles y en un mapa esquemático de la escena global monitorizada. Ambas líneas de investigación se tratan utilizando, como marco común, técnicas de estimación bayesiana: esta elección está justificada por la versatilidad y flexibilidad proporcionada por dicho marco estadístico, que permite la combinación natural de múltiples fuentes de información sobre los parámetros a estimar, así como un tratamiento riguroso de la incertidumbre asociada a las mismas mediante la inclusión de modelos de observación específicamente diseñados. Además, el marco seleccionado abre grandes posibilidades operacionales, puesto que permite la creación de diferentes métodos numéricos adaptados a las necesidades y características específicas de distintos problemas tratados. El sistema de seguimiento 3D con múltiples cámaras propuesto está específicamente diseñado para permitir descripciones esquemáticas de las medidas realizadas individualmente por cada una de las cámaras del sistema: esta elección de diseño, por tanto, no asume ningún algoritmo específico de detección o seguimiento 2D en ninguno de los sensores de la red, y hace que el sistema propuesto sea aplicable a redes reales de vigilancia con capacidades limitadas tanto en términos de procesamiento como de transmision. La combinación robusta de las observaciones capturadas individualmente por las cámaras, ruidosas, incompletas y probablemente contaminadas por falsas detecciones, se basa en un metodo de asociación bayesiana basado en geometría y color: los resultados de dicha asociación permiten el seguimiento 3D de los objetos de la escena mediante el uso de un filtro de partículas. El sistema de fusión de observaciones propuesto tiene, como principales características, una gran precisión en términos de localización 3D de objetos, y una destacable capacidad de recuperación tras eventuales errores debidos a un número insuficiente de datos de entrada. El sistema automático de localización de cámaras se basa en la observación de múltiples objetos móviles y un mapa esquemático de las áreas transitables del entorno monitorizado para inferir la posición absoluta de dicho sensor. Para este propósito, se propone un novedoso marco bayesiano que combina modelos dinámicos inducidos por el mapa en los objetos móviles presentes en la escena con las trayectorias observadas por la cámara, lo que representa un enfoque nunca utilizado en la literatura existente. El sistema de localización se divide en dos sub-tareas diferenciadas, debido a que cada una de estas tareas requiere del diseño de algoritmos específicos de muestreo para explotar en profundidad las características del marco desarrollado: por un lado, análisis de la ambigüedad del caso específicamente tratado y estimación aproximada de la localización de la cámara, y por otro, refinado de la localización de la cámara. El sistema completo, diseñado y probado para el caso específico de localización de cámaras en entornos de tráfico urbano, podría tener aplicación también en otros entornos y sensores de diferentes modalidades tras ciertas adaptaciones. ABSTRACT Mono-camera tracking systems have proved their capabilities for moving object trajectory analysis and scene monitoring, but their robustness and semantic possibilities are strongly limited by their local and monocular nature and are often insufficient for realistic surveillance applications. This thesis is aimed at extending the possibilities of moving object tracking systems to a higher level of scene understanding. The proposed extension comprises two separate directions. The first one is local, since is aimed at enriching the inferred positions of the moving objects within the area of the monitored scene directly covered by the cameras of the system; this task is achieved through the development of a multi-camera system for robust 3D tracking, able to provide 3D tracking information of multiple simultaneous moving objects from the observations reported by a set of calibrated cameras with semi-overlapping fields of view. The second extension is global, as is aimed at providing local observations performed within the field of view of one camera with a global context relating them to a much larger scene; to this end, an automatic camera positioning system relying only on observed object trajectories and a scene map is designed. The two lines of research in this thesis are addressed using Bayesian estimation as a general unifying framework. Its suitability for these two applications is justified by the flexibility and versatility of that stochastic framework, which allows the combination of multiple sources of information about the parameters to estimate in a natural and elegant way, addressing at the same time the uncertainty associated to those sources through the inclusion of models designed to this end. In addition, it opens multiple possibilities for the creation of different numerical methods for achieving satisfactory and efficient practical solutions to each addressed application. The proposed multi-camera 3D tracking method is specifically designed to work on schematic descriptions of the observations performed by each camera of the system: this choice allows the use of unspecific off-the-shelf 2D detection and/or tracking subsystems running independently at each sensor, and makes the proposal suitable for real surveillance networks with moderate computational and transmission capabilities. The robust combination of such noisy, incomplete and possibly unreliable schematic descriptors relies on a Bayesian association method, based on geometry and color, whose results allow the tracking of the targets in the scene with a particle filter. The main features exhibited by the proposal are, first, a remarkable accuracy in terms of target 3D positioning, and second, a great recovery ability after tracking losses due to insufficient input data. The proposed system for visual-based camera self-positioning uses the observations of moving objects and a schematic map of the passable areas of the environment to infer the absolute sensor position. To this end, a new Bayesian framework combining trajectory observations and map-induced dynamic models for moving objects is designed, which represents an approach to camera positioning never addressed before in the literature. This task is divided into two different sub-tasks, setting ambiguity analysis and approximate position estimation, on the one hand, and position refining, on the other, since they require the design of specific sampling algorithms to correctly exploit the discriminative features of the developed framework. This system, designed for camera positioning and demonstrated in urban traffic environments, can also be applied to different environments and sensors of other modalities after certain required adaptations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Las propiedades de los materiales cerámicos son una combinación entre las propiedades intrínsecas, definidas por los granos cristalinos, y las propiedades extrínsecas, como son bordes de grano y fases secundarias. La relación entre estos dos elementos produce en muchas ocasiones, la presencia de propiedades inusuales que son la base de muchos materiales electrocerámicos. Sirvan como ejemplo algunos materiales tipo como son: varistores cerámicos, termistores, materiales con coeficiente de resistividad positivo, sensores de borde de grano, etc. En un material electrocerámico con respuesta funcional la correlación entre estructura-microestructura -propiedades es una constante, tanto en la etapa de diseño en laboratorio como en la etapa de producción industrial. El empleo de Microscopía Raman Confocal (MRC) se propone como una metodología relevante para el estudio de los factores que afectan a dichas correlaciones en materiales electrocerámicos. La técnica de MRC constituye una potente herramienta que permite determinar no solo la estructura sino las interacciones entre los elementos microestructurales. La correlación entre estas variables con las propiedades funcionales y la posibilidad de determinar las mismas en condiciones de operación, abren unas posibilidades que hasta la fecha solo estaban en la imaginación de los científicos. En esta presentación se resumen brevemente algunos de los principios relacionados con la técnica de Microscopía Raman Confocal, que junto con ejemplos seleccionados permiten visualizar aspectos relacionados con: la orientación de cristales, identificación fases cristalinas; resolución de nanoestructuras e interfases; determinación y dinámica de dominios ferroeléctricos; presencia de tensiones mecánicas; fenómenos de conducción,... sobre diferentes materiales cerámicos. Los trabajos mostrados son ejemplos de alta resolución en 3D de materiales funcionales como son los materiales electrocerámicos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los sistemas de seguimiento mono-cámara han demostrado su notable capacidad para el análisis de trajectorias de objectos móviles y para monitorización de escenas de interés; sin embargo, tanto su robustez como sus posibilidades en cuanto a comprensión semántica de la escena están fuertemente limitadas por su naturaleza local y monocular, lo que los hace insuficientes para aplicaciones realistas de videovigilancia. El objetivo de esta tesis es la extensión de las posibilidades de los sistemas de seguimiento de objetos móviles para lograr un mayor grado de robustez y comprensión de la escena. La extensión propuesta se divide en dos direcciones separadas. La primera puede considerarse local, ya que está orientada a la mejora y enriquecimiento de las posiciones estimadas para los objetos móviles observados directamente por las cámaras del sistema; dicha extensión se logra mediante el desarrollo de un sistema multi-cámara de seguimiento 3D, capaz de proporcionar consistentemente las posiciones 3D de múltiples objetos a partir de las observaciones capturadas por un conjunto de sensores calibrados y con campos de visión solapados. La segunda extensión puede considerarse global, dado que su objetivo consiste en proporcionar un contexto global para relacionar las observaciones locales realizadas por una cámara con una escena de mucho mayor tamaño; para ello se propone un sistema automático de localización de cámaras basado en las trayectorias observadas de varios objetos móviles y en un mapa esquemático de la escena global monitorizada. Ambas líneas de investigación se tratan utilizando, como marco común, técnicas de estimación bayesiana: esta elección está justificada por la versatilidad y flexibilidad proporcionada por dicho marco estadístico, que permite la combinación natural de múltiples fuentes de información sobre los parámetros a estimar, así como un tratamiento riguroso de la incertidumbre asociada a las mismas mediante la inclusión de modelos de observación específicamente diseñados. Además, el marco seleccionado abre grandes posibilidades operacionales, puesto que permite la creación de diferentes métodos numéricos adaptados a las necesidades y características específicas de distintos problemas tratados. El sistema de seguimiento 3D con múltiples cámaras propuesto está específicamente diseñado para permitir descripciones esquemáticas de las medidas realizadas individualmente por cada una de las cámaras del sistema: esta elección de diseño, por tanto, no asume ningún algoritmo específico de detección o seguimiento 2D en ninguno de los sensores de la red, y hace que el sistema propuesto sea aplicable a redes reales de vigilancia con capacidades limitadas tanto en términos de procesamiento como de transmision. La combinación robusta de las observaciones capturadas individualmente por las cámaras, ruidosas, incompletas y probablemente contaminadas por falsas detecciones, se basa en un metodo de asociación bayesiana basado en geometría y color: los resultados de dicha asociación permiten el seguimiento 3D de los objetos de la escena mediante el uso de un filtro de partículas. El sistema de fusión de observaciones propuesto tiene, como principales características, una gran precisión en términos de localización 3D de objetos, y una destacable capacidad de recuperación tras eventuales errores debidos a un número insuficiente de datos de entrada. El sistema automático de localización de cámaras se basa en la observación de múltiples objetos móviles y un mapa esquemático de las áreas transitables del entorno monitorizado para inferir la posición absoluta de dicho sensor. Para este propósito, se propone un novedoso marco bayesiano que combina modelos dinámicos inducidos por el mapa en los objetos móviles presentes en la escena con las trayectorias observadas por la cámara, lo que representa un enfoque nunca utilizado en la literatura existente. El sistema de localización se divide en dos sub-tareas diferenciadas, debido a que cada una de estas tareas requiere del diseño de algoritmos específicos de muestreo para explotar en profundidad las características del marco desarrollado: por un lado, análisis de la ambigüedad del caso específicamente tratado y estimación aproximada de la localización de la cámara, y por otro, refinado de la localización de la cámara. El sistema completo, diseñado y probado para el caso específico de localización de cámaras en entornos de tráfico urbano, podría tener aplicación también en otros entornos y sensores de diferentes modalidades tras ciertas adaptaciones. ABSTRACT Mono-camera tracking systems have proved their capabilities for moving object trajectory analysis and scene monitoring, but their robustness and semantic possibilities are strongly limited by their local and monocular nature and are often insufficient for realistic surveillance applications. This thesis is aimed at extending the possibilities of moving object tracking systems to a higher level of scene understanding. The proposed extension comprises two separate directions. The first one is local, since is aimed at enriching the inferred positions of the moving objects within the area of the monitored scene directly covered by the cameras of the system; this task is achieved through the development of a multi-camera system for robust 3D tracking, able to provide 3D tracking information of multiple simultaneous moving objects from the observations reported by a set of calibrated cameras with semi-overlapping fields of view. The second extension is global, as is aimed at providing local observations performed within the field of view of one camera with a global context relating them to a much larger scene; to this end, an automatic camera positioning system relying only on observed object trajectories and a scene map is designed. The two lines of research in this thesis are addressed using Bayesian estimation as a general unifying framework. Its suitability for these two applications is justified by the flexibility and versatility of that stochastic framework, which allows the combination of multiple sources of information about the parameters to estimate in a natural and elegant way, addressing at the same time the uncertainty associated to those sources through the inclusion of models designed to this end. In addition, it opens multiple possibilities for the creation of different numerical methods for achieving satisfactory and efficient practical solutions to each addressed application. The proposed multi-camera 3D tracking method is specifically designed to work on schematic descriptions of the observations performed by each camera of the system: this choice allows the use of unspecific off-the-shelf 2D detection and/or tracking subsystems running independently at each sensor, and makes the proposal suitable for real surveillance networks with moderate computational and transmission capabilities. The robust combination of such noisy, incomplete and possibly unreliable schematic descriptors relies on a Bayesian association method, based on geometry and color, whose results allow the tracking of the targets in the scene with a particle filter. The main features exhibited by the proposal are, first, a remarkable accuracy in terms of target 3D positioning, and second, a great recovery ability after tracking losses due to insufficient input data. The proposed system for visual-based camera self-positioning uses the observations of moving objects and a schematic map of the passable areas of the environment to infer the absolute sensor position. To this end, a new Bayesian framework combining trajectory observations and map-induced dynamic models for moving objects is designed, which represents an approach to camera positioning never addressed before in the literature. This task is divided into two different sub-tasks, setting ambiguity analysis and approximate position estimation, on the one hand, and position refining, on the other, since they require the design of specific sampling algorithms to correctly exploit the discriminative features of the developed framework. This system, designed for camera positioning and demonstrated in urban traffic environments, can also be applied to different environments and sensors of other modalities after certain required adaptations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Durante los últimos años ha sido creciente el uso de las unidades de procesamiento gráfico, más conocidas como GPU (Graphic Processing Unit), en aplicaciones de propósito general, dejando a un lado el objetivo para el que fueron creadas y que no era otro que el renderizado de gráficos por computador. Este crecimiento se debe en parte a la evolución que han experimentado estos dispositivos durante este tiempo y que les ha dotado de gran potencia de cálculo, consiguiendo que su uso se extienda desde ordenadores personales a grandes cluster. Este hecho unido a la proliferación de sensores RGB-D de bajo coste ha hecho que crezca el número de aplicaciones de visión que hacen uso de esta tecnología para la resolución de problemas, así como también para el desarrollo de nuevas aplicaciones. Todas estas mejoras no solamente se han realizado en la parte hardware, es decir en los dispositivos, sino también en la parte software con la aparición de nuevas herramientas de desarrollo que facilitan la programación de estos dispositivos GPU. Este nuevo paradigma se acuñó como Computación de Propósito General sobre Unidades de Proceso Gráfico (General-Purpose computation on Graphics Processing Units, GPGPU). Los dispositivos GPU se clasifican en diferentes familias, en función de las distintas características hardware que poseen. Cada nueva familia que aparece incorpora nuevas mejoras tecnológicas que le permite conseguir mejor rendimiento que las anteriores. No obstante, para sacar un rendimiento óptimo a un dispositivo GPU es necesario configurarlo correctamente antes de usarlo. Esta configuración viene determinada por los valores asignados a una serie de parámetros del dispositivo. Por tanto, muchas de las implementaciones que hoy en día hacen uso de los dispositivos GPU para el registro denso de nubes de puntos 3D, podrían ver mejorado su rendimiento con una configuración óptima de dichos parámetros, en función del dispositivo utilizado. Es por ello que, ante la falta de un estudio detallado del grado de afectación de los parámetros GPU sobre el rendimiento final de una implementación, se consideró muy conveniente la realización de este estudio. Este estudio no sólo se realizó con distintas configuraciones de parámetros GPU, sino también con diferentes arquitecturas de dispositivos GPU. El objetivo de este estudio es proporcionar una herramienta de decisión que ayude a los desarrolladores a la hora implementar aplicaciones para dispositivos GPU. Uno de los campos de investigación en los que más prolifera el uso de estas tecnologías es el campo de la robótica ya que tradicionalmente en robótica, sobre todo en la robótica móvil, se utilizaban combinaciones de sensores de distinta naturaleza con un alto coste económico, como el láser, el sónar o el sensor de contacto, para obtener datos del entorno. Más tarde, estos datos eran utilizados en aplicaciones de visión por computador con un coste computacional muy alto. Todo este coste, tanto el económico de los sensores utilizados como el coste computacional, se ha visto reducido notablemente gracias a estas nuevas tecnologías. Dentro de las aplicaciones de visión por computador más utilizadas está el registro de nubes de puntos. Este proceso es, en general, la transformación de diferentes nubes de puntos a un sistema de coordenadas conocido. Los datos pueden proceder de fotografías, de diferentes sensores, etc. Se utiliza en diferentes campos como son la visión artificial, la imagen médica, el reconocimiento de objetos y el análisis de imágenes y datos de satélites. El registro se utiliza para poder comparar o integrar los datos obtenidos en diferentes mediciones. En este trabajo se realiza un repaso del estado del arte de los métodos de registro 3D. Al mismo tiempo, se presenta un profundo estudio sobre el método de registro 3D más utilizado, Iterative Closest Point (ICP), y una de sus variantes más conocidas, Expectation-Maximization ICP (EMICP). Este estudio contempla tanto su implementación secuencial como su implementación paralela en dispositivos GPU, centrándose en cómo afectan a su rendimiento las distintas configuraciones de parámetros GPU. Como consecuencia de este estudio, también se presenta una propuesta para mejorar el aprovechamiento de la memoria de los dispositivos GPU, permitiendo el trabajo con nubes de puntos más grandes, reduciendo el problema de la limitación de memoria impuesta por el dispositivo. El funcionamiento de los métodos de registro 3D utilizados en este trabajo depende en gran medida de la inicialización del problema. En este caso, esa inicialización del problema consiste en la correcta elección de la matriz de transformación con la que se iniciará el algoritmo. Debido a que este aspecto es muy importante en este tipo de algoritmos, ya que de él depende llegar antes o no a la solución o, incluso, no llegar nunca a la solución, en este trabajo se presenta un estudio sobre el espacio de transformaciones con el objetivo de caracterizarlo y facilitar la elección de la transformación inicial a utilizar en estos algoritmos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los sensores de propósito general RGB-D son dispositivos capaces de proporcionar información de color y de profundidad de la escena. Debido al amplio rango de aplicación que tienen estos sensores, despiertan gran interés en múltiples áreas, provocando que en algunos casos funcionen al límite de sensibilidad. Los métodos de calibración resultan más importantes, si cabe, para este tipo de sensores para mejorar la precisión de los datos adquiridos. Por esta razón, resulta de enorme transcendencia analizar y estudiar el calibrado de estos sensores RGBD de propósito general. En este trabajo se ha realizado un estudio de las diferentes tecnologías empleadas para determinar la profundidad, siendo la luz estructurada y el tiempo de vuelo las más comunes. Además, se ha analizado y estudiado aquellos parámetros del sensor que influyen en la obtención de los datos con precisión adecuada dependiendo del problema a tratar. El calibrado determina, como primer elemento del proceso de visión, los parámetros característicos que definen un sistema de visión artificial, en este caso, aquellos que permiten mejorar la exactitud y precisión de los datos aportados. En este trabajo se han analizado tres algoritmos de calibración, tanto de propósito general como de propósito específico, para llevar a cabo el proceso de calibrado de tres sensores ampliamente utilizados: Microsoft Kinect, PrimeSense Carmine 1.09 y Microsoft Kinect v2. Los dos primeros utilizan la tecnología de luz estructurada para determinar la profundidad, mientras que el tercero utiliza tiempo de vuelo. La experimentación realizada permite determinar de manera cuantitativa la exactitud y la precisión de los sensores y su mejora durante el proceso de calibrado, aportando los mejores resultados para cada caso. Finalmente, y con el objetivo de mostrar el proceso de calibrado en un sistema de registro global, diferentes pruebas han sido realizadas con el método de registro µ-MAR. Se ha utilizado inspección visual para determinar el comportamiento de los datos de captura corregidos según los resultados de los diferentes algoritmos de calibrado. Este hecho permite observar la importancia de disponer de datos exactos para ciertas aplicaciones como el registro 3D de una escena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabalho consistiu no projeto e construção de um veleiro autónomo de pequena escala. No início do trabalho, é feito um estudo acerca dos diferentes tipos de veículos autónomos, dando mais enfase aos veleiros. Em seguida, é iniciado o projeto do casco do veleiro, aplicando conceitos básicos de Arquitetura Naval. A forma do casco é desenhada com recurso ao programa DELFT Ship Free, onde são realizados estudos hidrodinâmicos do mesmo. Posteriormente é retratado a construção do casco projetado, com recurso a materiais compósitos e impressão 3D de componentes do veleiro. São ainda descritos os sensores, controladores, atuadores e programação desenvolvida para o veleiro. É também realizado um estudo sumário da estimativa de consumos e autonomia do sistema. No final, encontram-se os resultados obtidos das provas de mar efetuadas ao veleiro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behaviour of Nafion® polymeric membranes containing acid-base dyes, bromothymol blue (BB) and methyl violet (MV), were studied aiming at constructing an optical sensor for pH measurement. BB revealed to be inadequate for developing sensing phases due to the electrostatic repulsion between negative groups of their molecules and the negative charge of the sulfonate group of the Nafion®, which causes leaching of the dye from the membrane. On the other hand, MV showed to be suitable due to the presence of positive groups in its structure. The membrane prepared from a methanolic solution whose Nafion®/dye molar ratio was 20 presented the best analytical properties, changing its color from green to violet in the pH range from 0.6 to 3.0. The membrane can be prepared with good reproducibility, presenting durability of ca. 6 months and response time of 22 s, making possible its use for pH determination in flow analysis systems.