975 resultados para 3D Point Cloud


Relevância:

100.00% 100.00%

Publicador:

Resumo:

3D laser scanning is becoming a standard technology to generate building models of a facility's as-is condition. Since most constructions are constructed upon planar surfaces, recognition of them paves the way for automation of generating building models. This paper introduces a new logarithmically proportional objective function that can be used in both heuristic and metaheuristic (MH) algorithms to discover planar surfaces in a point cloud without exploiting any prior knowledge about those surfaces. It can also adopt itself to the structural density of a scanned construction. In this paper, a metaheuristic method, genetic algorithm (GA), is used to test this introduced objective function on a synthetic point cloud. The results obtained show the proposed method is capable to find all plane configurations of planar surfaces (with a wide variety of sizes) in the point cloud with a minor distance to the actual configurations. © 2014 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of 3D data in mobile robotics applications provides valuable information about the robot’s environment but usually the huge amount of 3D information is unmanageable by the robot storage and computing capabilities. A data compression is necessary to store and manage this information but preserving as much information as possible. In this paper, we propose a 3D lossy compression system based on plane extraction which represent the points of each scene plane as a Delaunay triangulation and a set of points/area information. The compression system can be customized to achieve different data compression or accuracy ratios. It also supports a color segmentation stage to preserve original scene color information and provides a realistic scene reconstruction. The design of the method provides a fast scene reconstruction useful for further visualization or processing tasks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rock mass characterization requires a deep geometric understanding of the discontinuity sets affecting rock exposures. Recent advances in Light Detection and Ranging (LiDAR) instrumentation currently allow quick and accurate 3D data acquisition, yielding on the development of new methodologies for the automatic characterization of rock mass discontinuities. This paper presents a methodology for the identification and analysis of flat surfaces outcropping in a rocky slope using the 3D data obtained with LiDAR. This method identifies and defines the algebraic equations of the different planes of the rock slope surface by applying an analysis based on a neighbouring points coplanarity test, finding principal orientations by Kernel Density Estimation and identifying clusters by the Density-Based Scan Algorithm with Noise. Different sources of information —synthetic and 3D scanned data— were employed, performing a complete sensitivity analysis of the parameters in order to identify the optimal value of the variables of the proposed method. In addition, raw source files and obtained results are freely provided in order to allow to a more straightforward method comparison aiming to a more reproducible research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complete characterization of rock masses implies the acquisition of information of both, the materials which compose the rock mass and the discontinuities which divide the outcrop. Recent advances in the use of remote sensing techniques – such as Light Detection and Ranging (LiDAR) – allow the accurate and dense acquisition of 3D information that can be used for the characterization of discontinuities. This work presents a novel methodology which allows the calculation of the normal spacing of persistent and non-persistent discontinuity sets using 3D point cloud datasets considering the three dimensional relationships between clusters. This approach requires that the 3D dataset has been previously classified. This implies that discontinuity sets are previously extracted, every single point is labeled with its corresponding discontinuity set and every exposed planar surface is analytically calculated. Then, for each discontinuity set the method calculates the normal spacing between an exposed plane and its nearest one considering 3D space relationship. This link between planes is obtained calculating for every point its nearest point member of the same discontinuity set, which provides its nearest plane. This allows calculating the normal spacing for every plane. Finally, the normal spacing is calculated as the mean value of all the normal spacings for each discontinuity set. The methodology is validated through three cases of study using synthetic data and 3D laser scanning datasets. The first case illustrates the fundamentals and the performance of the proposed methodology. The second and the third cases of study correspond to two rock slopes for which datasets were acquired using a 3D laser scanner. The second case study has shown that results obtained from the traditional and the proposed approaches are reasonably similar. Nevertheless, a discrepancy between both approaches has been found when the exposed planes members of a discontinuity set were hard to identify and when the planes pairing was difficult to establish during the fieldwork campaign. The third case study also has evidenced that when the number of identified exposed planes is high, the calculated normal spacing using the proposed approach is minor than those using the traditional approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

.bin files should be opened using CloudCompare

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rock mass classification systems are widely used tools for assessing the stability of rock slopes. Their calculation requires the prior quantification of several parameters during conventional fieldwork campaigns, such as the orientation of the discontinuity sets, the main properties of the existing discontinuities and the geo-mechanical characterization of the intact rock mass, which can be time-consuming and an often risky task. Conversely, the use of relatively new remote sensing data for modelling the rock mass surface by means of 3D point clouds is changing the current investigation strategies in different rock slope engineering applications. In this paper, the main practical issues affecting the application of Slope Mass Rating (SMR) for the characterization of rock slopes from 3D point clouds are reviewed, using three case studies from an end-user point of view. To this end, the SMR adjustment factors, which were calculated from different sources of information and processes, using the different softwares, are compared with those calculated using conventional fieldwork data. In the presented analysis, special attention is paid to the differences between the SMR indexes derived from the 3D point cloud and conventional field work approaches, the main factors that determine the quality of the data and some recognized practical issues. Finally, the reliability of Slope Mass Rating for the characterization of rocky slopes is highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the main concepts of a project under development concerning the analysis process of a scene containing a large number of objects, represented as unstructured point clouds. To achieve what we called the "optimal scene interpretation" (the shortest scene description satisfying the MDL principle) we follow an approach for managing 3-D objects based on a semantic framework based on ontologies for adding and sharing conceptual knowledge about spatial objects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern society is now facing significant difficulties in attempting to preserve its architectural heritage. Numerous challenges arise consequently when it comes to documentation, preservation and restoration. Fortunately, new perspectives on architectural heritage are emerging owing to the rapid development of digitalization. Therefore, this presents new challenges for architects, restorers and specialists. Additionally, this has changed the way they approach the study of existing heritage, changing from conventional 2D drawings in response to the increasing requirement for 3D representations. Recently, Building Information Modelling for historic buildings (HBIM) has escalated as an emerging trend to interconnect geometrical and informational data. Currently, the latest 3D geomatics techniques based on 3D laser scanners with enhanced photogrammetry along with the continuous improvement in the BIM industry allow for an enhanced 3D digital reconstruction of historical and existing buildings. This research study aimed to develop an integrated workflow for the 3D digital reconstruction of heritage buildings starting from a point cloud. The Pieve of San Michele in Acerboli’s Church in Santarcangelo Di Romagna (6th century) served as the test bed. The point cloud was utilized as an essential referential to model the BIM geometry using Autodesk Revit® 2022. To validate the accuracy of the model, Deviation Analysis Method was employed using CloudCompare software to determine the degree of deviation between the HBIM model and the point cloud. The acquired findings showed a very promising outcome in the average distance between the HBIM model and the point cloud. The conducted approach in this study demonstrated the viability of producing a precise BIM geometry from point clouds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A navegação e a interpretação do meio envolvente por veículos autónomos em ambientes não estruturados continua a ser um grande desafio na actualidade. Sebastian Thrun, descreve em [Thr02], que o problema do mapeamento em sistemas robóticos é o da aquisição de um modelo espacial do meio envolvente do robô. Neste contexto, a integração de sistemas sensoriais em plataformas robóticas, que permitam a construção de mapas do mundo que as rodeia é de extrema importância. A informação recolhida desses dados pode ser interpretada, tendo aplicabilidade em tarefas de localização, navegação e manipulação de objectos. Até à bem pouco tempo, a generalidade dos sistemas robóticos que realizavam tarefas de mapeamento ou Simultaneous Localization And Mapping (SLAM), utilizavam dispositivos do tipo laser rangefinders e câmaras stereo. Estes equipamentos, para além de serem dispendiosos, fornecem apenas informação bidimensional, recolhidas através de cortes transversais 2D, no caso dos rangefinders. O paradigma deste tipo de tecnologia mudou consideravelmente, com o lançamento no mercado de câmaras RGB-D, como a desenvolvida pela PrimeSense TM e o subsequente lançamento da Kinect, pela Microsoft R para a Xbox 360 no final de 2010. A qualidade do sensor de profundidade, dada a natureza de baixo custo e a sua capacidade de aquisição de dados em tempo real, é incontornável, fazendo com que o sensor se tornasse instantaneamente popular entre pesquisadores e entusiastas. Este avanço tecnológico deu origem a várias ferramentas de desenvolvimento e interacção humana com este tipo de sensor, como por exemplo a Point Cloud Library [RC11] (PCL). Esta ferramenta tem como objectivo fornecer suporte para todos os blocos de construção comuns que uma aplicação 3D necessita, dando especial ênfase ao processamento de nuvens de pontos de n dimensões adquiridas a partir de câmaras RGB-D, bem como scanners laser, câmaras Time-of-Flight ou câmaras stereo. Neste contexto, é realizada nesta dissertação, a avaliação e comparação de alguns dos módulos e métodos constituintes da biblioteca PCL, para a resolução de problemas inerentes à construção e interpretação de mapas, em ambientes indoor não estruturados, utilizando os dados provenientes da Kinect. A partir desta avaliação, é proposta uma arquitectura de sistema que sistematiza o registo de nuvens de pontos, correspondentes a vistas parciais do mundo, num modelo global consistente. Os resultados da avaliação realizada à biblioteca PCL atestam a sua viabilidade, para a resolução dos problemas propostos. Prova da sua viabilidade, são os resultados práticos obtidos, da implementação da arquitectura de sistema proposta, que apresenta resultados de desempenho interessantes, como também boas perspectivas de integração deste tipo de conceitos e tecnologia em plataformas robóticas desenvolvidas no âmbito de projectos do Laboratório de Sistemas Autónomos (LSA).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis project aims to the development of an algorithm for the obstacle detection and the interaction between the safety areas of an Automated Guided Vehicles (AGV) and a Point Cloud derived map inside the context of a CAD software. The first part of the project focuses on the implementation of an algorithm for the clipping of general polygons, with which has been possible to: construct the safety areas polygon, derive the sweep of this areas along the navigation path performing a union and detect the intersections with line or polygon representing the obstacles. The second part is about the construction of a map in terms of geometric entities (lines and polygons) starting from a point cloud given by the 3D scan of the environment. The point cloud is processed using: filters, clustering algorithms and concave/convex hull derived algorithms in order to extract line and polygon entities representing obstacles. Finally, the last part aims to use the a priori knowledge of possible obstacle detections on a given segment, to predict the behavior of the AGV and use this prediction to optimize the choice of the vehicle's assigned velocity in that segment, minimizing the travel time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La classificazione di dati geometrici 3D come point cloud è un tema emergente nell'ambito della visione artificiale in quanto trova applicazione in molteplici contesti di guida autonoma, robotica e realtà aumentata. Sebbene nel mercato siano presenti una grande quantità di sensori in grado di ottenere scansioni reali, la loro annotazione costituisce un collo di bottiglia per la generazione di dataset. Per sopperire al problema si ricorre spesso alla domain adaptation sfruttando dati sintetici annotati. Questo elaborato si pone come obiettivo l'analisi e l'implementazione di metodi di domain adaptation per classificazione di point cloud mediante pseudo-labels. In particolare, sono stati condotti esperimenti all'interno del framework RefRec valutando la possibilità di sostituire nuove architetture di deep learning al modello preesistente. Tra queste, Transformer con mascheramento dell'input ha raggiunto risultati superiori allo stato dell'arte nell'adattamento da dati sintetici a reali (ModelNet->ScanNet) esaminato in questa tesi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coltop3D is a software that performs structural analysis by using digital elevation model (DEM) and 3D point clouds acquired with terrestrial laser scanners. A color representation merging slope aspect and slope angle is used in order to obtain a unique code of color for each orientation of a local slope. Thus a continuous planar structure appears in a unique color. Several tools are included to create stereonets, to draw traces of discontinuities, or to compute automatically density stereonet. Examples are shown to demonstrate the efficiency of the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report describes a short-term study undertaken to investigate the potential for using dense three-dimensional (3D) point clouds generated from light detection and ranging (LIDAR) and photogrammetry to assess roadway roughness. Spatially continuous roughness maps have potential for the identification of localized roughness features, which would be a significant improvement over traditional profiling methods. This report specifically illustrates the use of terrestrial laser scanning (TLS) and photogrammetry using a process known as structure from motion (SFM) to acquire point clouds and illustrates the use of these point clouds in evaluating road roughness. Five roadway sections were chosen for scanning and testing: three gravel road sections, one portland cement concrete (PCC) section, and one asphalt concrete (AC) section. To compare clouds obtained from terrestrial laser scanning and photogrammetry, the coordinates of the clouds for the same section on the same date were matched using open source computer code. The research indicates that the technologies described are very promising for evaluating road roughness. The major advantage of both technologies is the large amount of data collected, which allows the evaluation of the full surface. Additional research is needed to further develop the use of dense 3D point clouds for roadway assessment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(From author). Comments: First 3D stochastic/fractal model of cirrus; first detailed analysis & explanation of power spectra of ice water content, including first observations of 50-km scale break and mixing-induced steepening of spectrum; first demonstration of the potential effect of wind shear on radiative fluxes by changing fall-streak orientation. Has spawned work on the effect of 3D photon transport on the radiative effects of cirrus clouds.