959 resultados para 3D Object Tracking
Resumo:
Multi-camera 3D tracking systems with overlapping cameras represent a powerful mean for scene analysis, as they potentially allow greater robustness than monocular systems and provide useful 3D information about object location and movement. However, their performance relies on accurately calibrated camera networks, which is not a realistic assumption in real surveillance environments. Here, we introduce a multi-camera system for tracking the 3D position of a varying number of objects and simultaneously refin-ing the calibration of the network of overlapping cameras. Therefore, we introduce a Bayesian framework that combines Particle Filtering for tracking with recursive Bayesian estimation methods by means of adapted transdimensional MCMC sampling. Addi-tionally, the system has been designed to work on simple motion detection masks, making it suitable for camera networks with low transmission capabilities. Tests show that our approach allows a successful performance even when starting from clearly inaccurate camera calibrations, which would ruin conventional approaches.
Resumo:
Les troubles du spectre autistique (TSA) sont actuellement caractérisés par une triade d'altérations, incluant un dysfonctionnement social, des déficits de communication et des comportements répétitifs. L'intégration simultanée de multiples sens est cruciale dans la vie quotidienne puisqu'elle permet la création d'un percept unifié. De façon similaire, l'allocation d'attention à de multiples stimuli simultanés est critique pour le traitement de l'information environnementale dynamique. Dans l'interaction quotidienne avec l'environnement, le traitement sensoriel et les fonctions attentionnelles sont des composantes de base dans le développement typique (DT). Bien qu'ils ne fassent pas partie des critères diagnostiques actuels, les difficultés dans les fonctions attentionnelles et le traitement sensoriel sont très courants parmi les personnes autistes. Pour cela, la présente thèse évalue ces fonctions dans deux études séparées. La première étude est fondée sur la prémisse que des altérations dans le traitement sensoriel de base pourraient être à l'origine des comportements sensoriels atypiques chez les TSA, tel que proposé par des théories actuelles des TSA. Nous avons conçu une tâche de discrimination de taille intermodale, afin d'investiguer l'intégrité et la trajectoire développementale de l'information visuo-tactile chez les enfants avec un TSA (N = 21, âgés de 6 à18 ans), en comparaison à des enfants à DT, appariés sur l’âge et le QI de performance. Dans une tâche à choix forcé à deux alternatives simultanées, les participants devaient émettre un jugement sur la taille de deux stimuli, basé sur des inputs unisensoriels (visuels ou tactiles) ou multisensoriels (visuo-tactiles). Des seuils différentiels ont évalué la plus petite différence à laquelle les participants ont été capables de faire la discrimination de taille. Les enfants avec un TSA ont montré une performance diminuée et pas d'effet de maturation aussi bien dans les conditions unisensorielles que multisensorielles, comparativement aux participants à DT. Notre première étude étend donc des résultats précédents d'altérations dans le traitement multisensoriel chez les TSA au domaine visuo-tactile. Dans notre deuxième étude, nous avions évalué les capacités de poursuite multiple d’objets dans l’espace (3D-Multiple Object Tracking (3D-MOT)) chez des adultes autistes (N = 15, âgés de 18 à 33 ans), comparés à des participants contrôles appariés sur l'âge et le QI, qui devaient suivre une ou trois cibles en mouvement parmi des distracteurs dans un environnement de réalité virtuelle. Les performances ont été mesurées par des seuils de vitesse, qui évaluent la plus grande vitesse à laquelle des observateurs sont capables de suivre des objets en mouvement. Les individus autistes ont montré des seuils de vitesse réduits dans l'ensemble, peu importe le nombre d'objets à suivre. Ces résultats étendent des résultats antérieurs d'altérations au niveau des mécanismes d'attention en autisme quant à l'allocation simultanée de l'attention envers des endroits multiples. Pris ensemble, les résultats de nos deux études révèlent donc des altérations chez les TSA quant au traitement simultané d'événements multiples, que ce soit dans une modalité ou à travers des modalités, ce qui peut avoir des implications importantes au niveau de la présentation clinique de cette condition.
Resumo:
This article presents a novel system and a control strategy for visual following of a 3D moving object by an Unmanned Aerial Vehicle UAV. The presented strategy is based only on the visual information given by an adaptive tracking method based on the color information, which jointly with the dynamics of a camera fixed to a rotary wind UAV are used to develop an Image-based visual servoing IBVS system. This system is focused on continuously following a 3D moving target object, maintaining it with a fixed distance and centered on the image plane. The algorithm is validated on real flights on outdoors scenarios, showing the robustness of the proposed systems against winds perturbations, illumination and weather changes among others. The obtained results indicate that the proposed algorithms is suitable for complex controls task, such object following and pursuit, flying in formation, as well as their use for indoor navigation
Resumo:
In this paper we introduce a formation control loop that maximizes the performance of the cooperative perception of a tracked target by a team of mobile robots, while maintaining the team in formation, with a dynamically adjustable geometry which is a function of the quality of the target perception by the team. In the formation control loop, the controller module is a distributed non-linear model predictive controller and the estimator module fuses local estimates of the target state, obtained by a particle filter at each robot. The two modules and their integration are described in detail, including a real-time database associated to a wireless communication protocol that facilitates the exchange of state data while reducing collisions among team members. Simulation and real robot results for indoor and outdoor teams of different robots are presented. The results highlight how our method successfully enables a team of homogeneous robots to minimize the total uncertainty of the tracked target cooperative estimate while complying with performance criteria such as keeping a pre-set distance between the teammates and the target, avoiding collisions with teammates and/or surrounding obstacles.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Pedicle screw insertion technique has made revolution in the surgical treatment of spinal fractures and spinal disorders. Although X- ray fluoroscopy based navigation is popular, there is risk of prolonged exposure to X- ray radiation. Systems that have lower radiation risk are generally quite expensive. The position and orientation of the drill is clinically very important in pedicle screw fixation. In this paper, the position and orientation of the marker on the drill is determined using pattern recognition based methods, using geometric features, obtained from the input video sequence taken from CCD camera. A search is then performed on the video frames after preprocessing, to obtain the exact position and orientation of the drill. An animated graphics, showing the instantaneous position and orientation of the drill is then overlaid on the processed video for real time drill control and navigation
Resumo:
A persistent issue of debate in the area of 3D object recognition concerns the nature of the experientially acquired object models in the primate visual system. One prominent proposal in this regard has expounded the use of object centered models, such as representations of the objects' 3D structures in a coordinate frame independent of the viewing parameters [Marr and Nishihara, 1978]. In contrast to this is another proposal which suggests that the viewing parameters encountered during the learning phase might be inextricably linked to subsequent performance on a recognition task [Tarr and Pinker, 1989; Poggio and Edelman, 1990]. The 'object model', according to this idea, is simply a collection of the sample views encountered during training. Given that object centered recognition strategies have the attractive feature of leading to viewpoint independence, they have garnered much of the research effort in the field of computational vision. Furthermore, since human recognition performance seems remarkably robust in the face of imaging variations [Ellis et al., 1989], it has often been implicitly assumed that the visual system employs an object centered strategy. In the present study we examine this assumption more closely. Our experimental results with a class of novel 3D structures strongly suggest the use of a view-based strategy by the human visual system even when it has the opportunity of constructing and using object-centered models. In fact, for our chosen class of objects, the results seem to support a stronger claim: 3D object recognition is 2D view-based.
Resumo:
Many 3D objects in the world around us are strongly constrained. For instance, not only cultural artifacts but also many natural objects are bilaterally symmetric. Thoretical arguments suggest and psychophysical experiments confirm that humans may be better in the recognition of symmetric objects. The hypothesis of symmetry-induced virtual views together with a network model that successfully accounts for human recognition of generic 3D objects leads to predictions that we have verified with psychophysical experiments.
Resumo:
This paper describes a new approach to detect and track maritime objects in real time. The approach particularly addresses the highly dynamic maritime environment, panning cameras, target scale changes, and operates on both visible and thermal imagery. Object detection is based on agglomerative clustering of temporally stable features. Object extents are first determined based on persistence of detected features and their relative separation and motion attributes. An explicit cluster merging and splitting process handles object creation and separation. Stable object clus- ters are tracked frame-to-frame. The effectiveness of the approach is demonstrated on four challenging real-world public datasets.
Resumo:
The integration of CMOS cameras with embedded processors and wireless communication devices has enabled the development of distributed wireless vision systems. Wireless Vision Sensor Networks (WVSNs), which consist of wirelessly connected embedded systems with vision and sensing capabilities, provide wide variety of application areas that have not been possible to realize with the wall-powered vision systems with wired links or scalar-data based wireless sensor networks. In this paper, the design of a middleware for a wireless vision sensor node is presented for the realization of WVSNs. The implemented wireless vision sensor node is tested through a simple vision application to study and analyze its capabilities, and determine the challenges in distributed vision applications through a wireless network of low-power embedded devices. The results of this paper highlight the practical concerns for the development of efficient image processing and communication solutions for WVSNs and emphasize the need for cross-layer solutions that unify these two so-far-independent research areas.
Resumo:
Tesis en inglés. Eliminadas las páginas en blanco del pdf
Resumo:
We present a user supported tracking framework that combines automatic tracking with extended user input to create error free tracking results that are suitable for interactive video production. The goal of our approach is to keep the necessary user input as small as possible. In our framework, the user can select between different tracking algorithms - existing ones and new ones that are described in this paper. Furthermore, the user can automatically fuse the results of different tracking algorithms with our robust fusion approach. The tracked object can be marked in more than one frame, which can significantly improve the tracking result. After tracking, the user can validate the results in an easy way, thanks to the support of a powerful interpolation technique. The tracking results are iteratively improved until the complete track has been found. After the iterative editing process the tracking result of each object is stored in an interactive video file that can be loaded by our player for interactive videos.
Resumo:
In sports games, it is often necessary to perceive a large number of moving objects (e.g., the ball and players). In this context, the role of peripheral vision for processing motion information in the periphery is often discussed especially when motor responses are required. In an attempt to test the basal functionality of peripheral vision in those sports-games situations, a Multiple Object Tracking (MOT) task that requires to track a certain number of targets amidst distractors, was chosen. Participants’ primary task was to recall four targets (out of 10 rectangular stimuli) after six seconds of quasi-random motion. As a second task, a button had to be pressed if a target change occurred (Exp 1: stop vs. form change to a diamond for 0.5 s; Exp 2: stop vs. slowdown for 0.5 s). While eccentricities of changes (5-10° vs. 15-20°) were manipulated, decision accuracy (recall and button press correct), motor response time as well as saccadic reaction time were calculated as dependent variables. Results show that participants indeed used peripheral vision to detect changes, because either no or very late saccades to the changed target were executed in correct trials. Moreover, a saccade was more often executed when eccentricities were small. Response accuracies were higher and response times were lower in the stop conditions of both experiments while larger eccentricities led to higher response times in all conditions. Summing up, it could be shown that monitoring targets and detecting changes can be processed by peripheral vision only and that a monitoring strategy on the basis of peripheral vision may be the optimal one as saccades may be afflicted with certain costs. Further research is planned to address the question whether this functionality is also evident in sports tasks.
Resumo:
In sports games, it is often necessary to perceive a large number of moving objects (e.g., the ball and players). In this context, the role of peripheral vision for processing motion information in the periphery is often discussed especially when motor responses are required. In an attempt to test the capability of using peripheral vision in those sports-games situations, a Multiple-Object-Tracking task that requires to track a certain number of targets amidst distractors, was chosen to determine the sensitivity of detecting target changes with peripheral vision only. Participants’ primary task was to recall four targets (out of 10 rectangular stimuli) after six seconds of quasi-random motion. As a second task, a button had to be pressed if a target change occurred (Exp 1: stop vs. form change to a diamond for 0.5 s; Exp 2: stop vs. slowdown for 0.5 s). Eccentricities of changes (5-10° vs. 15-20°) were manipulated, decision accuracy (recall and button press correct), motor response time and saccadic reaction time (change onset to saccade onset) were calculated and eye-movements were recorded. Results show that participants indeed used peripheral vision to detect changes, because either no or very late saccades to the changed target were executed in correct trials. Moreover, a saccade was more often executed when eccentricities were small. Response accuracies were higher and response times were lower in the stop conditions of both experiments while larger eccentricities led to higher response times in all conditions. Summing up, it could be shown that monitoring targets and detecting changes can be processed by peripheral vision only and that a monitoring strategy on the basis of peripheral vision may be the optimal one as saccades may be afflicted with certain costs. Further research is planned to address the question whether this functionality is also evident in sports tasks.