997 resultados para 37:659.3
Resumo:
Newsletter for the Iowa Commission on the Status of Women
Resumo:
The title compound, K(+)center dot C(8)H(13)BF(3)O(2)(-)center dot H(2)O, which was obtained from the reaction of a modified form of Z-vinylic telluride via a transmetalation reaction with n-BuLi, crystallizes as K(+) and C(8)H(13)BF(3)O(2)-ions along with a water molecule. The K(+) cation is surrounded by four anions, making close contacts with six F atoms at 2.659 (3)-2.906 (3) angstrom and with two O atoms at 2.806 (3) and 2.921 (3) angstrom in a distorted bicapped trigonal-prismatic geometry.
Resumo:
The AA. carried out experiments in the leprosarium São Roque, State of Paraná, South Brazil, to verify if the cattle tick Boophilus microplus could be experimentally infected in lepers, which was true. The AA. Tried also to be ascertained if Boophilus microplus and Amblyomma cajennense could change of hosts during their feedings which was true, both ticks continue feeding, the last species for many days, after being transferred from one to another leper. The junior A. describes in full their experiments and also a dermatites caused by tick bites. The senior A. brought to Rio de Janeiro most of the infected ticks for examination, which revealed a very high positivity. He smeared the sediments of lots of both species of ticks in Loewenstein medium and after a variable periode of incubation at 37° C. he obtained four new samples of cultures of acid-fast organisms, two from Amblyomma cajennense and two from Boophilus microplus. These cultures are being studied and will be inoculated into laboratory animals. The senior A. inoculated new batches of white rats with sediments of many ticks infected in lepers. Various hypotheses of both previous notes upon the subject now are verified facts. The A. is accumulating facts to draw the conclusions in the future. He also suggested the leprosy workers in the interior of the country to cooperate with him in such important studies, specially in the habitat of lepers in the rural zones of various States.
Resumo:
Densities of glycine in aqueous solutions of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate were determined at temperatures ranging from 283.15 to 313.15 K. The apparent molar volume, infinite dilution apparent molar volume, second derivative of the infinite dilution partial molar volume with respect to temperature, partial molar volume of transfer at infinite dilution, and the number of hydration were determined. It was found that the apparent molar volume at infinite dilution was positive, but decreased with increasing ionic liquid concentration and increased with increasing temperature. On the other hand, the partial molar volume of transfer at infinite dilution behaved in a similar manner, but was negative.
Resumo:
Poly(3-hydroxybutyrate), PHB, is a polymer with broad potential applications because of its biodegradability and biocompatibility. However, its high crystallinity is a limiting factor for many applications. To overcome this drawback, one strategy currently employed involves the reduction of the molecular weight of PHB with the concomitant formation of end-functionalized chains, such as those obtained via glycolysis. The glycolysis of PHB can be catalyzed by acid, base, or organometallic compounds. However, to our knowledge, there are no reports regarding PHB glycolysis catalyzed enzymatically. Among the major types of enzymes used in biocatalysis, the lipases stand out because they have the ability to catalyze reactions in both aqueous and organic media. Thus, in this study, we performed the enzymatic glycolysis of PHB using the lipase Amano PS (Pseudomonas cepacia) with ethane-1,2-diol (ethylene glycol) as the functionalizing agent. The results indicated that the glycolysis was successful and afforded hydroxyl-terminated oligomeric PHB polyols. Nuclear magnetic resonance spectra of the products showed characteristic signals for the terminal hydroxyl groups of the polyols, while thermogravimetric and differential scanning calorimetry analyses confirmed an increase in the thermal stability and a decrease in the crystallinity of the polyols compared with the starting PHB polymer, which were both attributed to the reduction in the molecular weight due to glycolysis.
Resumo:
1,3-propanediol is a high-value specialty chemical which has many industrial applications. Its main use is the production of the polymer polypropylene terephthalate, a thermoplastic used in the textile and automobile industries. The interest in 1,3-propanediol production from glycerol bio-conversion has increased after the employment of biodiesel by various countries, being produced by chemical synthesis from petroleum intermediates or biotechnologically by microbial fermentation. Glycerol is an abundant low-cost byproduct from biodiesel refineries, and it is the only substrate that can be naturally or enzymatically converted to 1,3-propanediol by microbial fermentation. In this review, information on 1,3-propanediol's importance, production and purification are presented, along with results from recent research on glycerol microbial conversion to 1,3-propanediol. The bio-production of this intermediate compound from glycerol is very attractive both economically and environmentally, since it allows the replacement of fossil fuels by renewable resources.
Resumo:
Comprend : Pensées de Montesquieu adressées à son fils, tirées d'un manuscrit que l'on dit être original ; Madrigal et épigramme sur la Troade de Pradon
Resumo:
Objectives: In the present study, a novel pathway by which palmilate potentiates glucose-induced insulin secretion by pancreatic beta cells was investigated. Methods: Groups of freshly isolated islets were incubated in 10 mM glucose with palmitate, LY294002, wortmannin, and fumonism B I for measurement of insulin secretion by radioimmunoassay (RIA). Also, phosphorylation and content of AKT and PKC proteins were evaluated by immunoblotting. Results: Glucose plus palmitate and glucose plus LY294002 or wortmannin (PI3K inhibitors) increased glucose-induced insulin secretion by isolated pancreatic islets. Glucose at 10 mM induced AKT and PKC zeta/lambda phosphorylation. Palmitate (0.1 mM) abolished glucose stimulation of AKT and PKC zeta/lambda phosphorylation possibly through PI3K inhibition because both LY294002 (50 mu M) and wortmannin (100 nM) caused the same effect. The inhibitory effect of palmitate on glucose-induced AKT and PKC zeta/lambda phosphorylation and the stimulatory effect of palmitate on glucose-induced insulin secretion were not observed in the presence of fumonisin B1, all inhibitor of ceramide synthesis. Conclusions: These findings support the proposition that palmilate increases insulin release in the presence of 10 mM glucose by inhibiting PI3K activity through a mechanism that involves ceramide synthesis.
Resumo:
1,3-propanediol is a high-value specialty chemical which has many industrial applications. Its main use is the production of the polymer polypropylene terephthalate, a thermoplastic used in the textile and automobile industries. The interest in 1,3-propanediol production from glycerol bio-conversion has increased after the employment of biodiesel by various countries, being produced by chemical synthesis from petroleum intermediates or biotechnologically by microbial fermentation. Glycerol is an abundant low-cost byproduct from biodiesel refineries, and it is the only substrate that can be naturally or enzymatically converted to 1,3-propanediol by microbial fermentation. In this review, information on 1,3-propanediol's importance, production and purification are presented, along with results from recent research on glycerol microbial conversion to 1,3-propanediol. The bio-production of this intermediate compound from glycerol is very attractive both economically and environmentally, since it allows the replacement of fossil fuels by renewable resources.