997 resultados para 336.012
Resumo:
Este artículo analiza el impacto de las regalías como una de las contraprestaciones de mayor relevancia que perciben los territorios colombianos para el desarrollo territorial, dadas las múltiples controversias que se han suscitado durante los últimos 25 años sobre la pertinencia y modalidades de aplicación de estos recursos por parte de las entidades territoriales, en tanto que motores de compensación de la disparidad regional.
Resumo:
Presenta dos Decretos Supremos que regula la pesca de la anchoveta para la producción de harina de pescado, la producción de guano para la agricultura y sobre la caza indiscriminada de lobos marinos que está causando la reducción de su población afectando el ecosistema del litoral peruano.
Resumo:
Attached is the Equipment and Vehicle Purchase Report for Fiscal Year 2011 as required by Iowa Code section 307.47. The report is sorted by accounting object codes. The object codes help sort the equipment into general categories.
Resumo:
"Technical challenges exist with infrastructure that can be addressed by nondestructive evaluation (NDE) methods, such as detecting corrosion damage to reinforcing steel that anchor concrete bridge railings to bridge road decks. Moisture and chloride ions reach the anchors along the cold joint between the rails and deck, causing corrosion that weakens the anchors and ultimately the barriers. The Center for Nondestructive Evaluation at Iowa State University has experience in development of measurement techniques and new sensors using a variety of interrogating energies. This research evaluated feasibility of three technologies — x-ray radiation, ground-penetrating radar (GPR), and magnetic flux leakage (MFL) — for detection and quantification of corrosion of embedded reinforcing steel. Controlled samples containing pristine reinforcing steel with and without epoxy and reinforcing steel with 25 percent and 50 percent section reduction were embedded in concrete at 2.5 in. deep for laboratory evaluation. Two of the techniques, GPR and MFL, were used in a limited field test on the Iowa Highway 210 Bridge over Interstate 35 in Story County. The methods provide useful and complementary information. GPR provides a rapid approach to identify reinforcing steel that has anomalous responses. MFL provides similar detection responses but could be optimized to provide more quantitative correlation to actual condition. Full implementation could use either GPR or MFL methods to identify areas of concern, followed by radiography to give a visual image of the actual condition, providing the final guidance for maintenance actions." The full 103 page report and the 2 page Tech Transfer Summary are included in this link.
Resumo:
The overarching goal of this project was to identify and evaluate cognitive and behavioral indices that are sensitive to sleep deprivation and may help identify commercial motor vehicle drivers (CMV) who are at-risk for driving in a sleep deprived state and may prove useful in field tests administered by officers. To that end, we evaluated indices of driver physiognomy (e.g., yawning, droopy eyelids, etc.) and driver behavioral/cognitive state (e.g. distracted driving) and the sensitivity of these indices to objective measures of sleep deprivation. The measures of sleep deprivation were sampled on repeated occasions over a period of 3.5-months in each of 44 drivers diagnosed with Obstructive Sleep Apnea (OSA) and 22 controls (matched for gender, age within 5 years, education within 2 years, and county of residence for rural vs. urban driving). Comprehensive analyses showed that specific dimensions of driver physiognomy associated with sleepiness in previous research and face-valid composite scores of sleepiness did not: 1) distinguish participants with OSA from matched controls; 2) distinguish participants before and after PAP treatment including those who were compliant with their treatment; 3) predict levels of sleep deprivation acquired objectively from actigraphy watches, not even among those chronically sleep deprived. Those findings are consistent with large individual differences in driver physiognomy. In other words, when individuals were sleep deprived as confirmed by actigraphy watch output they did not show consistently reliable behavioral markers of being sleep deprived. This finding held whether each driver was compared to him/herself with adequate and inadequate sleep, and even among chronically sleep deprived drivers. The scientific evidence from this research study does not support the use of driver physiognomy as a valid measure of sleep deprivation or as a basis to judge whether a CMV driver is too fatigued to drive, as on the current Fatigued Driving Evaluation Checklist.. Fair and accurate determinations of CMV driver sleepiness in the field will likely require further research on alternative strategies that make use of a combination of information sources besides driver physiognomy, including work logs, actigraphy, in vehicle data recordings, GPS data on vehicle use, and performance tests.
Resumo:
Weathering steel is commonly used as a cost-effective alternative for bridge superstructures, as the costs and environmental impacts associated with the maintenance/replacement of paint coatings are theoretically eliminated. The performance of weathering steel depends on the proper formation of a surface patina, which consists of a dense layer of corrosion product used to protect the steel from further atmospheric corrosion. The development of the weathering steel patina may be hindered by environmental factors such as humid environments, wetting/drying cycles, sheltering, exposure to de-icing chlorides, and design details that permit water to pond on steel surfaces. Weathering steel bridges constructed over or adjacent to other roadways could be subjected to sufficient salt spray that would impede the development of an adequate patina. Addressing areas of corrosion on a weathering steel bridge superstructure where a protective patina has not formed is often costly and negates the anticipated cost savings for this type of steel superstructure. Early detection of weathering steel corrosion is important to extending the service life of the bridge structure; however, written inspection procedures are not available for inspectors to evaluate the performance or quality of the patina. This project focused on the evaluation of weathering steel bridge structures, including possible methods to assess the quality of the weathering steel patina and to properly maintain the quality of the patina. The objectives of this project are summarized as follows: Identify weathering steel bridge structures that would be most vulnerable to chloride contamination, based on location, exposure, environment, and other factors. Identify locations on an individual weathering steel bridge structure that would be most susceptible to chloride contamination, such as below joints, splash/spray zones, and areas of ponding water or debris. Identify possible testing methods and/or inspection techniques for inspectors to evaluate the quality of the weathering steel patina at locations discussed above. Identify possible methods to measure and evaluate the level of chloride contamination at the locations discussed above. Evaluate the effectiveness of water washing on removing chlorides from the weathering steel patina. Develop a general prioritization for the washing of bridge structures based on the structure’s location, environment, inspection observations, patina evaluation findings, and chloride test results.
Resumo:
The US Highway 6 Bridge over Keg Creek outside of Council Bluffs, Iowa is a demonstration bridge site chosen to put into practice newly-developed Accelerated Bridge Construction (ABC) concepts. One of these new concepts is the use of prefabricated high performance concrete (HPC) bridge elements that are connected, in place, utilizing advanced material closure-pours and quick-to-install connection details. The Keg Creek Bridge is the first bridge in the US to utilize moment-resisting ultra-high performance concrete (UHPC) joints in negative moment regions over piers. Through laboratory and live load field testing, performance of these transverse joints as well as global bridge behavior is quantified and examined. The effectiveness of the structural performance of the bridge is evaluated to provide guidance for future designs of similar bridges throughout the US.
Resumo:
Backup warning system devices were evaluated to determine if they would alert winter maintenance snow plow drivers to obstacles directly behind the trailer and out of view of the driver when a unit is backed up. When the sensors on the back of the tow plow were covered with snow during plowing operations, the sensor would go off in the cab and continue going off, which would result in drivers turning the volume of the unit way down. One shop stated that the wireless transmitted signal would be hit or miss depending on the winter weather that they were operating in. The sensors on the back of the tow plow trailer would come in contact with salt brine and in this situation one of the sensors did go bad. The weatherproof box that was designed to keep the system waterproof did not fully keep the moisture out. It was found that the system did alert drivers of items behind the unit and there were no backup accidents reported during the research period.
Resumo:
Several agencies specify AASHTO T283 as the primary test for field acceptance of moisture susceptibility in hot mix asphalt. When used in this application, logistical difficulties challenge its practicality, while repeatability is routinely scrutinized by contractors. An alternative test is needed which can effectively demonstrate the ability to screen mixtures based on expected performance. The ideal replacement can be validated with field performance, is repeatable, and allows for prompt reporting of results. Dynamic modulus, flow number, AASHTO T283, Hamburg wheel tracking device (HWTD), and the moisture induced sensitivity test (MIST) were performed on plant produced surface mixes in Iowa. Follow-up distress surveys were used to rank the mixes by their performance. The rankings indicate both the quantity of swelling from MIST conditioning and submersed flow number matched the performance ranking of all but one mixture. Hamburg testing parameters also appear effective, namely the stripping inflection point and the ratio between stripping slope and the creep slope. Dynamic modulus testing was ineffective, followed by AASHTO T283 and ratios produced from flow number results of conditioned samples.
Resumo:
Research has shown that one of the major contributing factors in early joint deterioration of portland cement concrete (PCC) pavement is the quality of the coarse aggregate. Conventional physical and freeze/thaw tests are slow and not satisfactory in evaluating aggregate quality. In the last ten years the Iowa DOT has been evaluating X-ray analysis and other new technologies to predict aggregate durability in PCC pavement. The objective of this research is to evaluate thermogravimetric analysis (TGA) of carbonate aggregate. The TGA testing has been conducted with a TA 2950 Thermogravimetric Analyzer. The equipment is controlled by an IBM compatible computer. A "TA Hi-RES" (trademark) software package allows for rapid testing while retaining high resolution. The carbon dioxide is driven off the dolomite fraction between 705 deg C and 745 deg C and off the calcite fraction between 905 deg C and 940 deg C. The graphical plot of the temperature and weight loss using the same sample size and test procedure demonstrates that the test is very accurate and repeatable. A substantial number of both dolomites and limestones (calcites) have been subjected to TGA testing. The slopes of the weight loss plot prior to the dolomite and calcite transitions does correlate with field performance. The noncarbonate fraction, which correlates to the acid insolubles, can be determined by TGA for most calcites and some dolomites. TGA has provided information that can be used to help predict the quality of carbonate aggregate.
Resumo:
Sands Timber Lake is a 60 acre man made impoundment near Blockton, Iowa. The lake is the centerpiece of a 235 acre park, which is owned and managed by the Taylor County Conservation Board. The park is equipped with modern campsites, hiking trails, picnic areas, and a playground. Bordering the western shoreline of the lake is a beautiful hardwood timber which inspired the parks name. Sands Timber Lake has a 4,100 acre drainage area comprised of timber, grassland, and row crop. The lake is fed by four large classic gullies which branch off into many smaller gullies dissecting the drainage area. Since construction in 1993, Sands Timber Lake has been an extremely poor fishery. In 2006 Sands Timber Lake was added to the EPA’s 303d list of impaired water bodies. Turbid water was identified as the primary stressor. In 2007 a bathometric map was made which depicts lake-bottom contours and elevations which, when compared to the original survey of the area, revealed an alarming amount of siltation. What was once a twenty-three foot deep lake in 1994 has now been reduced to a mere fourteen feet. In addition to depth being lost, the lake’s surface has been reduced by nearly ten acres, destroying vital fish habitats. Local interest in preserving and enhancing the lake has led to the completion of a thorough watershed assessment and treatment plan. Included in the plan are several elements, the first being upland treatment. Locals are insistent that if conservation is not implemented in the watershed the lake will continue to degrade and park usage will continue to decline.