996 resultados para 310-M0005D
Resumo:
We present uranium-thoriumchronology for a 102 mcore through a Pleistocene reef at Tahiti (French Polynesia) sampled during IODP Expedition 310 "Tahiti Sea Level". We employ total and partial dissolution procedures on the older coral samples to investigate the diagenetic overprint of the uranium-thoriumsystem. Although alteration of the U-Th system cannot be robustly corrected, diagenetic trends in the U-Th data, combined with sea level and subsidence constraints for the growth of the corals enables the age of critical samples to be constrained to marine isotope stage 9. We use the ages of the corals, together with d18O based sea-level histories, to provide maximum constraints on possible paleo water-depths. These depth constraints are then compared to independent depth estimates based on algal and foraminiferal assemblages, microbioerosion patterns, and sedimentary facies, confirming the accuracy of these paleo water-depth estimates. We also use the fact that corals could not have grown above sea level to place amaximumconstraint on the subsidence rate of Tahiti to be 0.39 m ka**-1,with the most likely rate being close to the existing minimum estimate of 0.25m ka**-1.
Resumo:
The course of sea-level fluctuations during Termination II (TII; the penultimate deglaciation), which is critical for understanding ice-sheet dynamics and suborbital climate variability, has yet to be established. This is partly because most shallow-water sequences encompassing TII were eroded during sea-level lowstands of the last glacial period or were deposited below the present sea level. Here we report a new sequence recording sea-level changes during TII in the Pleistocene sequence at Hole M0005D (water depth: 59.63 m below sea level [mbsl]) off Tahiti, French Polynesia, which was drilled during Integrated Ocean Drilling Program Expedition 310. Lithofacies variations and stratigraphic changes in the taxonomic composition, preservation states, and intraspecific test morphology of large benthic foraminifers indicate a deepening-upward sequence in the interval from Core 310-M0005D-26R (core depth: 134 mbsl) through -16R (core depth: 106 mbsl). Reconstruction of relative sea levels, based on paleodepth estimations using large benthic foraminifers, indicated a rise in sea level of about 90 m during this interval, suggesting its correlation with one of the terminations. Assuming that this rise in sea level corresponds to that during TII, after correcting for subsidence since the time of deposition, a highstand sea-level position would be 2 ± 15 m above present sea level (masl), which is generally consistent with highstand sea-level positions in MIS 5e (4 ± 2 masl). If this rise in sea level corresponds to that during older terminations, the subsidence-corrected highstand sea-level positions (30 ± 15 masl for Termination III and 54 ± 15 masl for Termination IV) are not consistent with reported ranges of interglacial sea-level highstands (-18 to 15 masl). Therefore, the studied interval likely records the rise in sea level and associated environmental changes during TII. In particular, the intervening cored materials between the two episodes of sea-level rise found in the studied interval might record the sea-level reversal event during TII. This conclusion is consistent with U/Th ages of around 133 ka, which were obtained from slightly diagenetically altered (i.e., < 1% calcite) in situ corals in the studied interval (Core 310-M0005D-20R [core depth: 118 mbsl]). This study also suggests that our inverse approach to correlate a stratigraphic interval with an approximate time frame could be useful as an independent check on the accuracy of uranium-series dating, which has been applied extensively to fossil corals in late Quaternary sea-level studies.
Resumo:
Material cored during the Integrated Ocean Drilling Program (IODP) Expedition 310 'Tahiti Sea Level' revealed that the fossil reef systems around Tahiti are composed of two major stratigraphic sequences: (i) a last deglacial sequence; and (ii) an older Pleistocene sequence. The older Pleistocene carbonate sequence is composed of reef deposits associated with volcaniclastic sediments and was preserved in Hole 310-M0005D drilled off Maraa. Within an approximately 70-m-thick older Pleistocene sequence (33.22-101.93 m below seafloor; 92.85-161.56 m below present sealevel) in this hole, 11 depositional units are defined by lithological changes, sedimentological features, and paleontological characteristics and are numbered sequentially from the top of the hole downward (Subunits P1-P11). Paleowater depths inferred from nongeniculate coralline algae, combined with those determined by using corals and larger foraminifers, suggest two major sealevel rises during the deposition of the older Pleistocene sequence. Of these, the second sealevel rise is associated with an intervening sealevel drop. It is likely that the second sealevel rise corresponds to that during Termination II (TII, the penultimate deglaciation, from Marine Isotope Stages 6 to 5e). Therefore, the intervening sealevel drop can be correlated with that known as the 'sealevel reversal' during TII. Because there are limited data on the Pleistocene reef systems in the tropical South Pacific Ocean, this study provides important information about Pleistocene sealevel history, the evolution of coral reef ecosystems, and the responses of coral reefs to Quaternary climate changes.