999 resultados para 3-DIMENSIONALITY
Resumo:
The possible states in the flow around two identical circular cylinders in tandem arrangements are investigated for configurations in the vicinity of the drag inversion separation. By means of numerical simulations, the hysteresis in the transition between the shedding regimes is studied and the relationship between (three-dimensional) secondary instabilities and shedding regime determination is addressed. The differences observed in the behavior of two- and three-dimensional flows are analyzed, and the regions of bistable flow are delimited. Very good agreement is found between the proposed scenario and results available in the literature. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3420111]
Resumo:
Direct and simultaneous observation of root growth and plant water uptake is difficult because soils are opaque. X-ray imaging techniques such as projection radiography or Computer Tomography (CT) offer a partial alternative to such limitations. Nevertheless, there is a trade-off between resolution, large field-of-view and 3-dimensionality: With the current state of the technology, it is possible to have any two. In this study, we used X-ray transmission through thin-slab systems to monitor transient saturation fields that develop around roots as plants grow. Although restricted to 2-dimensions, this approach offers a large field-of-view together with high spatial and dynamic resolutions. To illustrate the potential of this technology, we grew peas in 1 cm thick containers filled with soil and imaged them at regular intervals. The dynamics of both the root growth and the water content field that developed around the roots could be conveniently monitored. Compared to other techniques such as X-ray CT, our system is relatively inexpensive and easy to implement. It can potentially be applied to study many agronomic problems, such as issues related to the impact of soil constraints (physical, chemical or biological) on root development.
Resumo:
Dissertação de Mestrado, Psicologia da Educação, especialidade de Contextos Educativos, 2 de Março de 2016, Universidade dos Açores.
Resumo:
In hyperspectral imagery a pixel typically consists mixture of spectral signatures of reference substances, also called endmembers. Linear spectral mixture analysis, or linear unmixing, aims at estimating the number of endmembers, their spectral signatures, and their abundance fractions. This paper proposes a framework for hyperpsectral unmixing. A blind method (SISAL) is used for the estimation of the unknown endmember signature and their abundance fractions. This method solve a non-convex problem by a sequence of augmented Lagrangian optimizations, where the positivity constraints, forcing the spectral vectors to belong to the convex hull of the endmember signatures, are replaced by soft constraints. The proposed framework simultaneously estimates the number of endmembers present in the hyperspectral image by an algorithm based on the minimum description length (MDL) principle. Experimental results on both synthetic and real hyperspectral data demonstrate the effectiveness of the proposed algorithm.
Resumo:
The authors investigated the dimensionality of the French version of the Rosenberg Self-Esteem Scale (RSES; Rosenberg, 1965) using confirmatory factor analysis. We tested models of 1 or 2 factors. Results suggest the RSES is a 1-dimensional scale with 3 highly correlated items. Comparison with the Revised NEO-Personality Inventory (NEO-PI-R; Costa, McCrae, & Rolland, 1998) demonstrated that Neuroticism correlated strongly and Extraversion and Conscientiousness moderately with the RSES. Depression accounted for 47% of the variance of the RSES. Other NEO-PI-R facets were also moderately related with self-esteem.
Resumo:
Three new zinc(II)-hexamethylenetetramine (hmt) complexes [Zn-2(4-nbz)(4)(mu(2)-hmt)(OH2)(hmt)] (1). [Zn-2(2-nbz)(4)(mu(2)-hmt)(2)](n) (2) and [Zn-3(3-nbz)(4)(mu(2)-hmt)(mu(2)-OH)(mu(3)-OH)](n) (3) with three isomeric nitrobenzoate, [4-nbz = 4-nitrobenzoate, 2-nbz = 2-nitrobenzoate and 3-nbz = 3-nitrobenzoate] have been synthesized and structurally characterized by X-ray crystallography. Their identities have also been established by elemental analysis: IR, NMR, UV-Vis and mass spectral studies. 1 is a dinuclear complex formed by bridging hmt with mu(2) coordinating mode. The geometry around the Zn centers in 1 is distorted tetrahedral. Paddle-wheel centrosymmetric Zn-2(2-nbz)(4) units of complex 2 are interconnected by mu(2)-hmt forming a one-dimensional chain with square-pyramidal geometries around the Zn centers. Compound 3 contains a mu(2)/mu(3)-hydroxido and mu(2)-hmt bridged 1D chain. In this complex, varied geometries around the Zn centers are observed viz, tetrahedral, square pyramidal and trigonal bipyramidal. Various weak forces, i.e. lone pair-pi, pi-pi and CH-pi interactions, play a key role in stabilizing the observed structures for complexes 1,2 and 3. This series of complexes demonstrates that although the nitro group does not coordinate to the metal center, its presence at the 2-, 3- or 4-position of the phenyl ring has a striking effect on the dimensionality as well as the structure of the resulted coordination polymers, probably due to the participation of the nitro group in 1.p.center dot center dot center dot pi and/or C-H center dot center dot center dot pi interactions.
Resumo:
Learning low dimensional manifold from highly nonlinear data of high dimensionality has become increasingly important for discovering intrinsic representation that can be utilized for data visualization and preprocessing. The autoencoder is a powerful dimensionality reduction technique based on minimizing reconstruction error, and it has regained popularity because it has been efficiently used for greedy pretraining of deep neural networks. Compared to Neural Network (NN), the superiority of Gaussian Process (GP) has been shown in model inference, optimization and performance. GP has been successfully applied in nonlinear Dimensionality Reduction (DR) algorithms, such as Gaussian Process Latent Variable Model (GPLVM). In this paper we propose the Gaussian Processes Autoencoder Model (GPAM) for dimensionality reduction by extending the classic NN based autoencoder to GP based autoencoder. More interestingly, the novel model can also be viewed as back constrained GPLVM (BC-GPLVM) where the back constraint smooth function is represented by a GP. Experiments verify the performance of the newly proposed model.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dimensionality reduction is employed for visual data analysis as a way to obtaining reduced spaces for high dimensional data or to mapping data directly into 2D or 3D spaces. Although techniques have evolved to improve data segregation on reduced or visual spaces, they have limited capabilities for adjusting the results according to user's knowledge. In this paper, we propose a novel approach to handling both dimensionality reduction and visualization of high dimensional data, taking into account user's input. It employs Partial Least Squares (PLS), a statistical tool to perform retrieval of latent spaces focusing on the discriminability of the data. The method employs a training set for building a highly precise model that can then be applied to a much larger data set very effectively. The reduced data set can be exhibited using various existing visualization techniques. The training data is important to code user's knowledge into the loop. However, this work also devises a strategy for calculating PLS reduced spaces when no training data is available. The approach produces increasingly precise visual mappings as the user feeds back his or her knowledge and is capable of working with small and unbalanced training sets.
Resumo:
This thesis investigates phenomena of vortex dynamics in type II superconductors depending on the dimensionality of the flux-line system and the strength of the driving force. In the low dissipative regime of Bi_2Sr_2CaCu_2O_{8+delta} (BSCCO) the influence of oxygen stoichiometry on flux-line tension was examined. An entanglement crossover of the vortex system at low magnetic fields was identified and a comprehensive B-T phase diagram of solid and fluid phases derived.In YBa_2Cu_3O_7 (YBCO) extremely long (>100 mm) high-quality measurement bridges allowed to extend the electric-field window in transport measurements by up to three orders of magnitude. Complementing analyses of the data conclusively produced dynamic exponents of the glass transition z~9 considerably higher than theoretically predicted and previously reported. In high-dissipative measurements a voltage instability appearing in the current-voltage characteristics of type II superconductors was observed for the first time in BSCCO and shown to result from a Larkin-Ovchinnikov flux-flow vortex instability under the influence of quasi-particle heating. However, in an analogous investigation of YBCO the instability was found to appear only in the temperature and magnetic-field regime of the vortex-glass state. Rapid-pulse measurements fully confirmed this correlation of vortex glass and instability in YBCO and revealed a constant rise time (~µs).
Resumo:
Molybdenum is a low Tc, type I superconductor whose fundamental properties are poorly known. Its importance as an essential constituent of new high performance radiation detectors, the so-called transition edge sensors (TESs) calls for better characterization of this superconductor, especially in thin film form. Here we report on a study of the basic superconducting features of Mo thin films as a function of their thickness. The resistivity is found to rise and the critical temperature decreases on decreasing film thickness, as expected. More relevant, the critical fields along and perpendicular to the film plane are markedly different, thickness dependent and much larger than the thermodynamic critical field of Mo bulk. These results are consistent with a picture of type II 2D superconducting films, and allow estimates of the fundamental superconducting lengths of Mo. The role of morphology in determining the 2D and type II character of the otherwise type I molybdenum is discussed. The possible consequences of this behaviour on the performance of radiation detectors are also addressed
Resumo:
Canonical test cases for sloshing wave impact problems are pre-sented and discussed. In these cases the experimental setup has been simpli?ed seeking the highest feasible repeatability; a rectangular tank subjected to harmonic roll motion has been the tested con?guration. Both lateral and roof impacts have been studied, since both cases are relevant in sloshing assessment and show speci?c dynamics. An analysis of the impact pressure of the ?rst four impact events is provided in all cases. It has been found that not in all cases a Gaussian ?tting of each individual peak is feasible. The tests have been conducted with both water and oil in order to obtain high and moderate Reynolds number data; the latter may be useful as simpler test cases to assess the capabilities of CFD codes in simulating sloshing impacts. The re-peatability of impact pressure values increases dramatically when using oil. In addition, a study of the two-dimensionality of the problem using a tank con?guration that can be adjusted to 4 di?erent thicknesses has been carried out. Though the kinemat-ics of the free surface does not change signi cantly in some of the cases, the impact pressure values of the ?rst impact events changes substantially from the small to the large aspect ratios thus meaning that attention has to be paid to this issue when reference data is used for validation of 2D and 3D CFD codes.
Resumo:
The behavior of quantum dot, quantum wire, and quantum well InAs/GaAs solar cells is studied with a very simplified model based on experimental results in order to assess their performance as a function of the low bandgap material volume fraction fLOW. The efficiency of structured devices is found to exceed the efficiency of a non-structured GaAs cell, in particular under concentration, when fLOW is high; this condition is easier to achieve with quantum wells. If three different quasi Fermi levels appear with quantum dots the efficiency can be much higher.