941 resultados para 3-D Creativity
Resumo:
Some antimicrobial peptides have a broad spectrum of action against many different kinds of microorganisms. Gomesin and protegrin-1 are examples of such antimicrobial peptides, and they were studied by molecular dynamics in this research. Both have a beta-hairpin conformation stabilized by two disulfide bridges and are active against Gram-positive and Gram-negative bacteria, as well as fungi. In this study, the role of the disulfide bridge in the maintenance of the tertiary peptide structure of protegrin-1 and gomesin is analyzed by the structural characteristics of these peptides and two of their respective variants, gomy4 and proty4, in which the four cysteines are replaced by four tyrosine residues. The absence of disulfide bridges in gomy4 and proty4 is compensated by overall reinforcement of the original hydrogen bonds and extra attractive interactions between the aromatic rings of the tyrosine residues. The net effects on the variants with respect to the corresponding natural peptides are: i) maintenance of the original beta-hairpin conformation, with great structural similarities between the mutant and the corresponding natural peptide; ii) combination of positive F and. Ramachandran angles within the hairpin head region with a qualitative change to a combination of positive (F) and negative (.) angles, and iii) significant increase in structural flexibility. Experimental facts about the antimicrobial activity of the gomesin and protegrin-1 variants have also been established here, in the hope that the detailed data provided in the present study may be useful for understanding the mechanism of action of these peptides.
Resumo:
Background: Chrysotile is considered less harmful to human health than other types of asbestos fibers. Its clearance from the lung is faster and, in comparison to amphibole forms of asbestos, chrysotile asbestos fail to accumulate in the lung tissue due to a mechanism involving fibers fragmentation in short pieces. Short exposure to chrysotile has not been associated with any histopathological alteration of lung tissue. Methods: The present work focuses on the association of small chrysotile fibers with interphasic and mitotic human lung cancer cells in culture, using for analyses confocal laser scanning microscopy and 3D reconstructions. The main goal was to perform the analysis of abnormalities in mitosis of fibers-containing cells as well as to quantify nuclear DNA content of treated cells during their recovery in fiber-free culture medium. Results: HK2 cells treated with chrysotile for 48 h and recovered in additional periods of 24, 48 and 72 h in normal medium showed increased frequency of multinucleated and apoptotic cells. DNA ploidy of the cells submitted to the same chrysotile treatment schedules showed enhanced aneuploidy values. The results were consistent with the high frequency of multipolar spindles observed and with the presence of fibers in the intercellular bridge during cytokinesis. Conclusion: The present data show that 48 h chrysotile exposure can cause centrosome amplification, apoptosis and aneuploid cell formation even when long periods of recovery were provided. Internalized fibers seem to interact with the chromatin during mitosis, and they could also interfere in cytokinesis, leading to cytokinesis failure which forms aneuploid or multinucleated cells with centrosome amplification.
Resumo:
A geometrical approach of the finite-element analysis applied to electrostatic fields is presented. This approach is particularly well adapted to teaching Finite Elements in Electrical Engineering courses at undergraduate level. The procedure leads to the same system of algebraic equations as that derived by classical approaches, such as variational principle or weighted residuals for nodal elements with plane symmetry. It is shown that the extension of the original procedure to three dimensions is straightforward, provided the domain be meshed in first-order tetrahedral elements. The element matrices are derived by applying Maxwell`s equations in integral form to suitably chosen surfaces in the finite-element mesh.
Resumo:
This paper provides insights into liquid free water dynamics in wood vessels based on Lattice Boltzmann experiments. The anatomy of real wood samples was reconstructed from systematic 3-D analyses of the vessel contours derived from successive microscopic images. This virtual vascular system was then used to supply fluid-solid boundary conditions to a two-phase Lattice Boltzmann scheme and investigate capillary invasion of this hydrophilic porous medium. Behavior of the liquid phase was strongly dependent on anatomical features, especially vessel bifurcations and reconnections. Various parameters were examined in numerical experiments with ideal vessel bifurcations, to clarify our interpretation of these features. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We conduct a theoretical analysis to investigate the convective instability of 3-D fluid-saturated geological fault zones when they are heated uniformly from below. In particular, we have derived exact analytical solutions for the critical Rayleigh numbers of different convective flow structures. Using these critical Rayleigh numbers, three interesting convective flow structures have been identified in a geological fault zone system. It has been recognized that the critical Rayleigh numbers of the system have a minimum value only for the fault zone of infinite length, in which the corresponding convective flow structure is a 2-D slender-circle flow. However, if the length of the fault zone is finite, the convective flow in the system must be 3-D. Even if the length of the fault zone is infinite, since the minimum critical Rayleigh number for the 2-D slender-circle flow structure is so close to that for the 3-D convective flow structure, the system may have almost the same chance to pick up the 3-D convective flow structures. Also, because the convection modes are so close for the 3-D convective flow structures, the convective flow may evolve into the 3-D finger-like structures, especially for the case of the fault thickness to height ratio approaching zero. This understanding demonstrates the beautiful aspects of the present analytical solution for the convective instability of 3-D geological fault zones, because the present analytical solution is valid for any value of the ratio of the fault height to thickness. Using the present analytical solution, the conditions, under which different convective flow structures may take place, can be easily determined.
Resumo:
Spaceborne/airborne synthetic aperture radar (SAR) systems provide high resolution two-dimensional terrain imagery. The paper proposes a technique for combining multiple SAR images, acquired on flight paths slightly separated in the elevation direction, to generate high resolution three-dimensional imagery. The technique could be viewed as an extension to interferometric SAR (InSAR) in that it generates topographic imagery with an additional dimension of resolution. The 3-D multi-pass SAR imaging system is typically characterised by a relatively short ambiguity length in the elevation direction. To minimise the associated ambiguities we exploit the relative phase information within the set of images to track the terrain landscape. The SAR images are then coherently combined, via a nonuniform DFT, over a narrow (in elevation) volume centred on the 'dominant' terrain ground plane. The paper includes a detailed description of the technique, background theory, including achievable resolution, and the results of an experimental study.
Resumo:
Mushroom strains contain complex nutritional biomolecules with a wide spectrum of therapeutic and prophylactic properties. Among these compounds, β-d-glucans play an important role in immuno-modulating and anti-tumor activities. The present work involves a novel colorimetric assay method for β-1,3-d-glucans with a triple helix tertiary structure by using Congo red. The specific interaction that occurs between Congo red and β-1,3-d-glucan was detected by bathochromic shift from 488 to 516 nm (> 20 nm) in UV–Vis spectrophotometer. A micro- and high throughput method based on a 96-well microtiter plate was devised which presents several advantages over the published methods since it requires only 1.51 μg of polysaccharides in samples, greater sensitivity, speed, assay of many samples and very cheap. β-d-Glucans of several mushrooms (i.e., Coriolus versicolor, Ganoderma lucidum, Pleurotus ostreatus, Ganoderma carnosum, Hericium erinaceus, Lentinula edodes, Inonotus obliquus, Auricularia auricular, Polyporus umbellatus, Cordyseps sinensis, Agaricus blazei, Poria cocos) were isolated by using a sequence of several extractions with cold and boiling water, acidic and alkaline conditions and quantified by this microtiter plate method. FTIR spectroscopy was used to study the structural features of β-1,3-d-glucans in these mushroom samples as well as the specific interaction of these polysaccharides with Congo red. The effect of NaOH on triple helix conformation of β-1,3-d-glucans was investigated in several mushroom species.
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2011
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2008
Resumo:
Recent technological advances in remote sensing have enabled investigation of the morphodynamics and hydrodynamics of large rivers. However, measuring topography and flow in these very large rivers is time consuming and thus often constrains the spatial resolution and reach-length scales that can be monitored. Similar constraints exist for computational fluid dynamics (CFD) studies of large rivers, requiring maximization of mesh-or grid-cell dimensions and implying a reduction in the representation of bedform-roughness elements that are of the order of a model grid cell or less, even if they are represented in available topographic data. These ``subgrid'' elements must be parameterized, and this paper applies and considers the impact of roughness-length treatments that include the effect of bed roughness due to ``unmeasured'' topography. CFD predictions were found to be sensitive to the roughness-length specification. Model optimization was based on acoustic Doppler current profiler measurements and estimates of the water surface slope for a variety of roughness lengths. This proved difficult as the metrics used to assess optimal model performance diverged due to the effects of large bedforms that are not well parameterized in roughness-length treatments. However, the general spatial flow patterns are effectively predicted by the model. Changes in roughness length were shown to have a major impact upon flow routing at the channel scale. The results also indicate an absence of secondary flow circulation cells in the reached studied, and suggest simpler two-dimensional models may have great utility in the investigation of flow within large rivers. Citation: Sandbach, S. D. et al. (2012), Application of a roughness-length representation to parameterize energy loss in 3-D numerical simulations of large rivers, Water Resour. Res., 48, W12501, doi: 10.1029/2011WR011284.
Resumo:
A high-resolution three-dimensional (3-D) seismic reflection survey was conducted in Lake Geneva, near the city of Lausanne, Switzerland, as part of a project for developing such seismic techniques. Using a single 48-channel streamer, the 3-D site with an area of 1200 m x 600 m was surveyed in 10 days. A variety of complex geologic structures (e.g. thrusts, folds, channel-fill) up to similar to150 m below the water bottom were obtained with a 15 in.(3) water gun. The 3-D data allowed the construction of an accurate velocity model and the distinction of five major seismic facies within the Lower Freshwater Molasse (Aquitanian) and the Quaternary sedimentary units. Additionally, the Plateau Molasse (PM) and Subalpine Molasse (SM) erosional surface, "La Paudeze" thrust fault (PM-SM boundary) and the thickness of Quaternary sediments were accurately delineated in 3-D.
Resumo:
The geometry and connectivity of fractures exert a strong influence on the flow and transport properties of fracture networks. We present a novel approach to stochastically generate three-dimensional discrete networks of connected fractures that are conditioned to hydrological and geophysical data. A hierarchical rejection sampling algorithm is used to draw realizations from the posterior probability density function at different conditioning levels. The method is applied to a well-studied granitic formation using data acquired within two boreholes located 6 m apart. The prior models include 27 fractures with their geometry (position and orientation) bounded by information derived from single-hole ground-penetrating radar (GPR) data acquired during saline tracer tests and optical televiewer logs. Eleven cross-hole hydraulic connections between fractures in neighboring boreholes and the order in which the tracer arrives at different fractures are used for conditioning. Furthermore, the networks are conditioned to the observed relative hydraulic importance of the different hydraulic connections by numerically simulating the flow response. Among the conditioning data considered, constraints on the relative flow contributions were the most effective in determining the variability among the network realizations. Nevertheless, we find that the posterior model space is strongly determined by the imposed prior bounds. Strong prior bounds were derived from GPR measurements and helped to make the approach computationally feasible. We analyze a set of 230 posterior realizations that reproduce all data given their uncertainties assuming the same uniform transmissivity in all fractures. The posterior models provide valuable statistics on length scales and density of connected fractures, as well as their connectivity. In an additional analysis, effective transmissivity estimates of the posterior realizations indicate a strong influence of the DFN structure, in that it induces large variations of equivalent transmissivities between realizations. The transmissivity estimates agree well with previous estimates at the site based on pumping, flowmeter and temperature data.