986 resultados para 2d Nmr
Resumo:
2D NMR spectroscopy has been used to determine the metal configuration in solution of three complexes, viz. [(eta(6)-p-cymene)Ru(L*)Cl] (1) and [(eta(6)-p-cymene)Ru(L*)(L')] (ClO4) (L' = H2O, 2; PPh3, 3), where L* is the anion of (S)-(1-phenylethyl)salicylaldimine. The complexes exist in two diastereomeric forms in solution. Both the (R-Ru,S-C)- and (S-Ru,S-C)-diastereomers display the presence of attractive, CH/pi interaction involving the phenyl group attached to the chiral carbon and the cymene ring hydrogens. This interaction restricts the rotation of the C*-N single bond and, as a result, two structural types with either the hydrogen atom attached to the chiral carbon (C*) or the methyl group attached to C* in close proximity of the cymene ring protons get stabilized. Using 2D NMR spectroscopy as a tool, the spatial interaction involving these protons are studied in order to obtain the metal configuration(s) of the diastereomeric complexes in solution. This technique has enabled us to determine the metal configuration as (R-Ru,S-C) for the major isomers of 1-3 in solution.
Resumo:
In this Letter, we examine magnetization in double- and zero-quantum reservoirs of an ensemble of spin-1/2 nuclei and describe their role in determining the sensitivity of a class of separated local field NMR experiments based on Hartmann-Hahn cross-polarization. We observe that for the liquid crystal system studied, a large dilute spin-polarization, obtained initially by the use of adiabatic cross-polarization, can enhance the sensitivity of the above experiment. The signal enhancement factors, however, are found to vary and depend on the local dynamics. The experimental results have been utilized to obtain the local order-parameters of the system. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
Identifying cellular processes in terms of metabolic pathways is one of the avowed goals of metabolomics studies. Currently, this is done after relevant metabolites are identified to allow their mapping onto specific pathways. This task is daunting due to the complex nature of cellular processes and the difficulty in establishing the identity of individual metabolites. We propose here a new method: ChemSMP (Chemical Shifts to Metabolic Pathways), which facilitates rapid analysis by identifying the active metabolic pathways directly from chemical shifts obtained from a single two-dimensional (2D) C-13-H-1] correlation NMR spectrum without the need for identification and assignment of individual metabolites. ChemSMP uses a novel indexing and scoring system comprised of a ``uniqueness score'' and a ``coverage score''. Our method is demonstrated on metabolic pathways data from the Small Molecule Pathway Database (SMPDB) and chemical shifts from the Human Metabolome Database (HMDB). Benchmarks show that ChemSMP has a positive prediction rate of >90% in the presence of deduttered data and can sustain the same at 60-70% even in the presence of noise, such as deletions of peaks and chemical shift deviations. The method tested on NMR data acquired for a mixture of 20 amino acids shows a success rate of 93% in correct recovery of pathways. When used on data obtained from the cell lysate of an unexplored oncogenic cell line, it revealed active metabolic pathways responsible for regulating energy homeostasis of cancer cells. Our unique tool is thus expected to significantly enhance analysis of NMIR-based metabolomics data by reducing existing impediments.
Resumo:
现代多脉冲及2D NMR技术是过去十年中发展起来的崭新的NMR实验方法。计算机模拟做为NMR实验的强有力分析手段已日益受到重视。国内这方面工作开展得尚很少;国外发表的工作主要采用的是数字模拟,存在分析结果不够直观、物理意义不够清晰等缺陷。本论文工作采用乘积算符方法研制出对分析多脉冲及2D NMR实验普适的模拟程序PROPER;在乘积算符基础上,针对磁等性自旋体系,提出了实用的对称化乘积算符及多量子积算符方法。一、多脉冲及2D NMR实验的计算机模拟 1. 采用乘积算符方法在本所PDP-11/23微机上研制了多脉冲及2D NMR实验的模拟程序PROPER。该程序对不超过4核(I = 1/2)的同核及异核弱耦合自旋体系非选择性脉冲序列的分析是普遍适用的。受计算机内存的限制,PROPER程序所能处理的脉冲序列脉冲间隔数目一般不超过10。2. 应用PROPER模拟程序对INEP和DEPT脉冲序列进行了分析比较;特别对BIRD脉冲序列的各种相位变型进行了模拟分析,给出了分析结果,分析过程中考虑了影响BIRD作用效果的同核耦合因素。应用结果表明,PROPER程序计算正确、迅速、给出的模拟结果较通常的数字模拟方法简单、直观、物理意义清楚,便于分析。由于采用算符模拟,结果的输出打印比较费时。目前,PROPER程序正在改进和完善之中。二、多脉冲及2D NMR实验的密度算符描述 1. 针对磁等性自旋(I = 1/2)体系,首次提出了对称化乘积算符描述方法。在通常的乘积算符基础上,引入了对称化乘积算符,并对其数理基础进行了详细论证。推导了算符循环对易关系决定的Liourill-Von Neumann方程的解,给出了算符间普遍存在的循环对易关系及其相应的演化公式。据此,以InS(I = 1/2, S = 1/2; n = 2,3)自旋体系为例,对DEPT脉冲序列进行了分析;结果表明,该方法较通常的乘积算符方法对磁等性自旋体系的分析要简单、实用,且物理意义更加明确。由于该方法涉及较多的算符对易关系,因此不易计算机编程。2. 在对称化乘积算符基础上引入了多量子积算符的概念。以In(I = 1/2; n = 2,3)体系为例,给出了两者的互换关系。推导出了具有标量耦合作用的两组合粒子体系普适的多量子积算符环对易关系及相应的演化解析式。多量子积算符方法可望将1/2-自旋磁等性组合粒子表象与自旋大于1/2的单粒子表象统一起来,并为计算机模拟提供新的数学方法。该方法尚有待于进一步研究。
Resumo:
The efficient synthesis of 5-(5-bromovaleramido)-1,10-phenanthroline, 5-(6-bromohexanamido)-1,10-phenanthroline, and 5-(11-bromoundecanamido)-1,10-phenanthroline are described, which reacted with cis-Ru(bpy)(2)Cl-2. 2H(2)O and sodium hexafluorophosphate to form Ru(bpy)(2)[phen-NHCO(CH2)(n)Br](PF6)(2) (n = 4, 5 or 10; phen = 1,10-phenanthroline). The intricate H-1 NMR spectra at low field of these complexes were completely assigned in virtue of H-1-H-1 COSY technique. Cyclic voltammetry was used to study electrochemical behaviours of these complexes, and their luminescent properties were investigated with fluorescent spectra.
Resumo:
A new series of Ru(II) polypyridine surfactants, Ru(bpy)(2)[phenNH CO(CH2)(n)CH3](PF6)(2), where n is 10, 12, 14 or 16, has been prepared and characterized. The H-1-NMR spectra of these new Ru(II) complexes were attributed and discussed by the H-1-H-1 COSY method. The comparative analysis of IR spectra of these complexes and their responding free ligands has shown that there are intensive d --> pi* feedback interactions between central Ru(II) and their ligands. Their fluorescent, electrochemical and electrochemiluminescent behaviours are also reported.
Resumo:
用一维NMR方法研究了新型电化学发光探针Ru(dcbpy)(phen)2(PF6)2的立体结构,借助二维1H-1HCOSY和1H-13ccosy实验技术对其氢谱和碳谱进行了完全的归属,并给出了其氢谱和碳谱的化学位移值。
Resumo:
The interactions of lanthanide ions and the Ln-DTPA (DTPA = diethylenetriaminepentaacetate) complex with di palmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine (DPPE) bilayers are studied by 2D NOESY and FT-Raman spectroscopy. Proton NMR spectroscopic results show that lanthanide ions combine with phosphate groups in the polar region of the outer layer of DPPC liposomes, leading to the separation in chemical shift of the proton signal of N(CH3)(3) The conformational change of the O-C-C-N+ backbone from the gauche conformer to the trans one is not found; i.e., the orientation of the polar headgroup is still parallel to the surface of the bilayers. The Ln-DTPA complex at low concentration in a pH 7.4 solution localizes far away from bilayers and thereby has little effect on the structure of bilayers. The FT-Raman spectroscopic results indicate that lanthanide ions affect strongly the fluidity of acyl chains of DPPE bilayers while the Ln-DTPA complex affects it slightly.
Resumo:
Solid state nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for studying structural and dynamical properties of disordered and partially ordered materials, such as glasses, polymers, liquid crystals, and biological materials. In particular, twodimensional( 2D) NMR methods such as ^^C-^^C correlation spectroscopy under the magicangle- spinning (MAS) conditions have been used to measure structural constraints on the secondary structure of proteins and polypeptides. Amyloid fibrils implicated in a broad class of diseases such as Alzheimer's are known to contain a particular repeating structural motif, called a /5-sheet. However, the details of such structures are poorly understood, primarily because the structural constraints extracted from the 2D NMR data in the form of the so-called Ramachandran (backbone torsion) angle distributions, g{^,'4)), are strongly model-dependent. Inverse theory methods are used to extract Ramachandran angle distributions from a set of 2D MAS and constant-time double-quantum-filtered dipolar recoupling (CTDQFD) data. This is a vastly underdetermined problem, and the stability of the inverse mapping is problematic. Tikhonov regularization is a well-known method of improving the stability of the inverse; in this work it is extended to use a new regularization functional based on the Laplacian rather than on the norm of the function itself. In this way, one makes use of the inherently two-dimensional nature of the underlying Ramachandran maps. In addition, a modification of the existing numerical procedure is performed, as appropriate for an underdetermined inverse problem. Stability of the algorithm with respect to the signal-to-noise (S/N) ratio is examined using a simulated data set. The results show excellent convergence to the true angle distribution function g{(j),ii) for the S/N ratio above 100.
Resumo:
NMR can be considered a multi-scale multidimensional technology in the sense that it provides both spatial insight at macroscopic (MRI) or microscopic level (relaxometry), together with chemical characterization (HR-MAS). In this study 296 apples (from 4 cultivars) were MRI screened (20 slices per fruit) among which 7 fruits were used for metabolomic study by 1H HR MAS in order to assess various chemical shifts: malic acid, sucrose, glucose, fructose and ethanol. On the first season, tissue samples were taken from the sound and affected apples (near the core, centre and outer part of the mesocarp) belonging to sound and affected locations, while on the second season, tissue samples were focused on the comparison between sound and affected tissue. Beside, MRI and 2D non-destructive relaxometry (on whole fruits, and localized tissue) where performed on 72 and 12 apples respectively in order to compare features at macroscopic (tissue) and microscopic (subcellular) level. HR MAS shows higher content of ?-glucose, ?-glucose, malic acid and aromatic compounds in watercore affected tissues from both seasons, while sound tissue reflects higher sucrose. Microscopic (subcellular) degradation of tissue varies according to disorder development and is in good accordance with macroscopic characterization with MRI.
Resumo:
(2)H-{(1)H} 1D and 2D-NMR spectroscopy is used to evaluate the enantiodiscrimination potential of DNA-based, lyotropic chiral mesophases on a series of (pro) chiral amino acids.
Resumo:
Benzene carboxylic acids and Benzamide act as their self-complement in molecular recognition to form inter-molecular hydrogen bonded dimers between amide and carboxylic acid groups, which have been investigated by H-1, C-13 and N-15 NMR spectroscopy. Extensive NMR studies using diffusion ordered spectroscopy (DOSY), variable temperature 1D, 2D NMR, established the formation of heterodimers of benzamide with benzoic acid, salicylic acid and phenyl acetic acid in deuterated chloroform solution. Association constants for the complex formation in the solution state have been determined. The results are ascertained by X-ray diffraction in the solid state. Intermolecular interactions in solution and in solid state were found to be similar. The structural parameters obtained by X-ray diffraction studies are compared with those obtained by DFT calculations. (C) 2012 Elsevier B.V. All rights reserved.