999 resultados para 2D structures


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with topology optimization in plane elastic-linear problems considering the influence of the self weight in efforts in structural elements. For this purpose it is used a numerical technique called SESO (Smooth ESO), which is based on the procedure for progressive decrease of the inefficient stiffness element contribution at lower stresses until he has no more influence. The SESO is applied with the finite element method and is utilized a triangular finite element and high order. This paper extends the technique SESO for application its self weight where the program, in computing the volume and specific weight, automatically generates a concentrated equivalent force to each node of the element. The evaluation is finalized with the definition of a model of strut-and-tie resulting in regions of stress concentration. Examples are presented with optimum topology structures obtaining optimal settings. (C) 2012 CIMNE (Universitat Politecnica de Catalunya). Published by Elsevier Espana, S.L.U. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alkali tantalates and niobates, including K(Ta / Nb)O3, Li(Ta / Nb)O3 and Na(Ta / Nb)O3, are a very promising ferroic family of lead-free compounds with perovskite-like structures. Their versatile properties make them potentially interesting for current and future application in microelectronics, photocatalysis, energy and biomedics. Among them potassium tantalate, KTaO3 (KTO), has been raising interest as an alternative for the well-known strontium titanate, SrTiO3 (STO). KTO is a perovskite oxide with a quantum paraelectric behaviour when electrically stimulated and a highly polarizable lattice, giving opportunity to tailor its properties via external or internal stimuli. However problems related with the fabrication of either bulk or 2D nanostructures makes KTO not yet a viable alternative to STO. Within this context and to contribute scientifically to the leverage tantalate based compounds applications, the main goals of this thesis are: i) to produce and characterise thin films of alkali tantalates by chemical solution deposition on rigid Si based substrates, at reduced temperatures to be compatible with Si technology, ii) to fulfil scientific knowledge gaps in these relevant functional materials related to their energetics and ii) to exploit alternative applications for alkali tantalates, as photocatalysis. In what concerns the synthesis attention was given to the understanding of the phase formation in potassium tantalate synthesized via distinct routes, to control the crystallization of desired perovskite structure and to avoid low temperature pyrochlore or K-deficient phases. The phase formation process in alkali tantalates is far from being deeply analysed, as in the case of Pb-containing perovskites, therefore the work was initially focused on the process-phase relationship to identify the driving forces responsible to regulate the synthesis. Comparison of phase formation paths in conventional solid-state reaction and sol-gel method was conducted. The structural analyses revealed that intermediate pyrochlore K2Ta2O6 structure is not formed at any stage of the reaction using conventional solid-state reaction. On the other hand in the solution based processes, as alkoxide-based route, the crystallization of the perovskite occurs through the intermediate pyrochlore phase; at low temperatures pyrochlore is dominant and it is transformed to perovskite at >800 °C. The kinetic analysis carried out by using Johnson-MehlAvrami-Kolmogorow model and quantitative X-ray diffraction (XRD) demonstrated that in sol-gel derived powders the crystallization occurs in two stages: i) at early stage of the reaction dominated by primary nucleation, the mechanism is phase-boundary controlled, and ii) at the second stage the low value of Avrami exponent, n ~ 0.3, does not follow any reported category, thus not permitting an easy identification of the mechanism. Then, in collaboration with Prof. Alexandra Navrotsky group from the University of California at Davis (USA), thermodynamic studies were conducted, using high temperature oxide melt solution calorimetry. The enthalpies of formation of three structures: pyrochlore, perovskite and tetragonal tungsten bronze K6Ta10.8O30 (TTB) were calculated. The enthalpies of formation from corresponding oxides, ∆Hfox, for KTaO3, KTa2.2O6 and K6Ta10.8O30 are -203.63 ± 2.84 kJ/mol, - 358.02 ± 3.74 kJ/mol, and -1252.34 ± 10.10 kJ/mol, respectively, whereas from elements, ∆Hfel, for KTaO3, KTa2.2O6 and K6Ta10.8O30 are -1408.96 ± 3.73 kJ/mol, -2790.82 ± 6.06 kJ/mol, and -13393.04 ± 31.15 kJ/mol, respectively. The possible decomposition reactions of K-deficient KTa2.2O6 pyrochlore to KTaO3 perovskite and Ta2O5 (reaction 1) or to TTB K6Ta10.8O30 and Ta2O5 (reaction 2) were proposed, and the enthalpies were calculated to be 308.79 ± 4.41 kJ/mol and 895.79 ± 8.64 kJ/mol for reaction 1 and reaction 2, respectively. The reactions are strongly endothermic, indicating that these decompositions are energetically unfavourable, since it is unlikely that any entropy term could override such a large positive enthalpy. The energetic studies prove that pyrochlore is energetically more stable phase than perovskite at low temperature. Thus, the local order of the amorphous precipitates drives the crystallization into the most favourable structure that is the pyrochlore one with similar local organization; the distance between nearest neighbours in the amorphous or short-range ordered phase is very close to that in pyrochlore. Taking into account the stoichiometric deviation in KTO system, the selection of the most appropriate fabrication / deposition technique in thin films technology is a key issue, especially concerning complex ferroelectric oxides. Chemical solution deposition has been widely reported as a processing method to growth KTO thin films, but classical alkoxide route allows to crystallize perovskite phase at temperatures >800 °C, while the temperature endurance of platinized Si wafers is ~700 °C. Therefore, alternative diol-based routes, with distinct potassium carboxylate precursors, was developed aiming to stabilize the precursor solution, to avoid using toxic solvents and to decrease the crystallization temperature of the perovskite phase. Studies on powders revealed that in the case of KTOac (solution based on potassium acetate), a mixture of perovskite and pyrochlore phases is detected at temperature as low as 450 °C, and gradual transformation into monophasic perovskite structure occurs as temperature increases up to 750 °C, however the desired monophasic KTaO3 perovskite phase is not achieved. In the case of KTOacac (solution with potassium acetylacetonate), a broad peak is detected at temperatures <650 °C, characteristic of amorphous structures, while at higher temperatures diffraction lines from pyrochlore and perovskite phases are visible and a monophasic perovskite KTaO3 is formed at >700 °C. Infrared analysis indicated that the differences are due to a strong deformation of the carbonate-based structures upon heating. A series of thin films of alkali tantalates were spin-coated onto Si-based substrates using diol-based routes. Interestingly, monophasic perovskite KTaO3 films deposited using KTOacac solution were obtained at temperature as low as 650 °C; films were annealed in rapid thermal furnace in oxygen atmosphere for 5 min with heating rate 30 °C/sec. Other compositions of the tantalum based system as LiTaO3 (LTO) and NaTaO3 (NTO), were successfully derived as well, onto Si substrates at 650 °C as well. The ferroelectric character of LTO at room temperature was proved. Some of dielectric properties of KTO could not be measured in parallel capacitor configuration due to either substrate-film or filmelectrode interfaces. Thus, further studies have to be conducted to overcome this issue. Application-oriented studies have also been conducted; two case studies: i) photocatalytic activity of alkali tantalates and niobates for decomposition of pollutant, and ii) bioactivity of alkali tantalate ferroelectric films as functional coatings for bone regeneration. Much attention has been recently paid to develop new type of photocatalytic materials, and tantalum and niobium oxide based compositions have demonstrated to be active photocatalysts for water splitting due to high potential of the conduction bands. Thus, various powders of alkali tantalates and niobates families were tested as catalysts for methylene blue degradation. Results showed promising activities for some of the tested compounds, and KNbO3 is the most active among them, reaching over 50 % degradation of the dye after 7 h under UVA exposure. However further modifications of powders can improve the performance. In the context of bone regeneration, it is important to have platforms that with appropriate stimuli can support the attachment and direct the growth, proliferation and differentiation of the cells. In lieu of this here we exploited an alternative strategy for bone implants or repairs, based on charged mediating signals for bone regeneration. This strategy includes coating metallic 316L-type stainless steel (316L-SST) substrates with charged, functionalized via electrical charging or UV-light irradiation, ferroelectric LiTaO3 layers. It was demonstrated that the formation of surface calcium phosphates and protein adsorption is considerably enhanced for 316L-SST functionalized ferroelectric coatings. Our approach can be viewed as a set of guidelines for the development of platforms electrically functionalized that can stimulate tissue regeneration promoting direct integration of the implant in the host tissue by bone ingrowth and, hence contributing ultimately to reduce implant failure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Solar TErrestrial RElations Observatory (STEREO) provides high cadence and high resolution images of the structure and morphology of coronal mass ejections (CMEs) in the inner heliosphere. CME directions and propagation speeds have often been estimated through the use of time-elongation maps obtained from the STEREO Heliospheric Imager (HI) data. Many of these CMEs have been identified by citizen scientists working within the SolarStormWatch project ( www.solarstormwatch.com ) as they work towards providing robust real-time identification of Earth-directed CMEs. The wide field of view of HI allows scientists to directly observe the two-dimensional (2D) structures, while the relative simplicity of time-elongation analysis means that it can be easily applied to many such events, thereby enabling a much deeper understanding of how CMEs evolve between the Sun and the Earth. For events with certain orientations, both the rear and front edges of the CME can be monitored at varying heliocentric distances (R) between the Sun and 1 AU. Here we take four example events with measurable position angle widths and identified by the citizen scientists. These events were chosen for the clarity of their structure within the HI cameras and their long track lengths in the time-elongation maps. We show a linear dependency with R for the growth of the radial width (W) and the 2D aspect ratio (χ) of these CMEs, which are measured out to ≈ 0.7 AU. We estimated the radial width from a linear best fit for the average of the four CMEs. We obtained the relationships W=0.14R+0.04 for the width and χ=2.5R+0.86 for the aspect ratio (W and R in units of AU).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents experimental studies of rare earth (RE) metal induced structures on Si(100) surfaces. Two divalent RE metal adsorbates, Eu and Yb, are investigated on nominally flat Si(100) and on vicinal, stepped Si(100) substrates. Several experimental methods have been applied, including scanning tunneling microscopy/spectroscopy (STM/STS), low energy electron diffraction (LEED), synchrotron radiation photoelectron spectroscopy (SR-PES), Auger electron spectroscopy (AES), thermal desorption spectroscopy (TDS), and work function change measurements (Δφ). Two stages can be distinguished in the initial growth of the RE/Si interface: the formation of a two-dimensional (2D) adsorbed layer at submonolayer coverage and the growth of a three-dimensional (3D) silicide phase at higher coverage. The 2D phase is studied for both adsorbates in order to discover whether they produce common reconstructions or reconstructions common to the other RE metals. For studies of the 3D phase Yb is chosen due to its ability to crystallize in a hexagonal AlB2 type lattice, which is the structure of RE silicide nanowires, therefore allowing for the possibility of the growth of one-dimensional (1D) wires. It is found that despite their similar electronic configuration, Eu and Yb do not form similar 2D reconstructions on Si(100). Instead, a wealth of 2D structures is observed and atomic models are proposed for the 2×3-type reconstructions. In addition, adsorbate induced modifications on surface morphology and orientational symmetry are observed. The formation of the Yb silicide phase follows the Stranski-Krastanov growth mode. Nanowires with the hexagonal lattice are observed on the flat Si(100) substrate, and moreover, an unexpectedly large variety of growth directions are revealed. On the vicinal substrate the growth of the silicide phase as 3D islands and wires depends drastically on the growth conditions. The conditions under which wires with high aspect ratio and single orientation parallel to the step edges can be formed are demonstrated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work structural, magnetic and transport properties of InGaAs quantum wells (QW) prepared by MBE with an remote Mn layer are investigated. By means of high-resolution X-ray diffractometry the structure of the samples is analyzed. It is shown that Mn ions penetrate into the QW. Influence of the thickness of GaAs spacer and annealing at 286 ºС on the properties of the system is shown. It is shown that annealing of the samples led to Mn activation and narrowing of the Mn layer. Substantial role of 2D holes in ferromagnetic ordering in Mn layer is shown. Evidence for that is observation of maximum at 25 – 55 K on the resistivity temperature dependence. Position of maximum, which is used for quantitative assessment of the Curie temperature, correlates with calculations of the Curie temperature for structures with indirect interaction via 2D holes’ channel. Dependence of the Curie temperature on the spacer thickness shows, that creation of applicable spintronic devices needs high-precision equipment to manufacture extra fine structures. The magnetotransport measurements show that charge carrier mobility is very low. This leads to deficiency of the anomalous Hall effect. At the same time, magnetic field dependences of the magnetization at different temperatures demonstrate that systems are ferromagnetically ordered. These facts, most probably, give evidence of presence of the ferromagnetic MnAs clusters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O uso de métodos geofísicos (elétricos, eletromagnéticos e perfilagem de poço) na prospecção de água subterrânea em muitas localidades no Estado do Pará, tornou-se possível graças a um convênio firmado em 1988, entre a Fundação Nacional de Saúde e a Universidade Federal do Pará, através do Departamento de Geofísica e do Curso de Pós-Graduação em Geofísica, sendo estes responsáveis pelo estudo técnico das áreas prospectadas. Nosso objetivo nesta tese é contribuir com critérios geoelétricos, com base na utilização de dados de resistividade aparente (pa), medidos em superfície, visando melhorar a caracterização do quadro geológico de subsuperfície e por conseguinte prover informações mais confiáveis quanto aos recursos dos mananciais subterrâneos. Inicialmente, analisamos a influência que algumas estruturas 2D, em subsuperfície, tem sobre os dados de eletroresistividade, medidos em Sondagens Elétricas Verticais (SEVs), com o arranjo Schlumberger. Este estudo foi realizado através de simulações numéricas utilizando o programa computacional SEV2D desenvolvido no Departamento de Geofísica, baseado na técnica dos elementos finitos. Resultados mostram ambiguidades geradas pelo uso de métodos de interpretação 1D de SEVs, executados em ambientes geológicos de características bidimensionais. A parte prática da tese se constituiu no tratamento interpretativo de dados de eletroresistividade coletados na sede do município de São Domingos do Araguaia, cidade localizada na região sudeste do Estado do Pará. A aquisição deste dados se deu através de SEVs, utilizando o arranjo Schlumberger. Correlacionando os resultados das interpretações geofísicas com informações geológicas foi possível definir um quadro geológico para a área que serve como referência para a prospecção de água subterrânea na referida cidade.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A prospecção geofísica para a exploração de água subterrânea em regiões cristalinas torna-se uma tarefa extremamente difícil pela presença de estruturas como falhas, fraturas e ocorrência de variação lateral de resistividade no manto intempérico. Para analisar a influência da variação bidimensional da propriedade física no comportamento das curvas de sondagem elétrica vertical Schlumberger, simulou-se modelos contendo tais estruturas encaixadas no manto de alteração com ângulo de mergulho de 30° e 90° e com a posição do centro de sondagem variando em relação a heterogeneidade. A modelagem numérica foi feita através do método dos elementos finitos com o programa EGSLIB/SEV2D. O resultado da simulação mostra que o emprego da técnica da sondagem elétrica vertical Schlumberger sobre meios bidimensionais não funciona eficientemente, como quando aplicada em regiões sedimentares e de aluvião, devido o fenômeno da ambigüidade que dificulta a interpretação das curvas. Dentre os métodos geofísicos para a investigação hidrogeológica, a aplicação dos métodos eletrorresistivos mostra-se mais simples, eficaz e econômica. Assim, o levantamento geofísico para orientar os trabalhos de perfurações de poços na cidade de Ourilândia do Norte contou de trinta e duas sondagens elétricas verticais tipo Schlumberger e um caminhamento elétrico dipolo-dipolo realizados em diversas ruas da cidade. As curvas de resistividade aparente, obtidas com as sondagens foram tratadas e processadas considerando um modelo de camadas planas, horizontais, homogêneas e isotropicas, inicialmente com o algoritmo EGSLIB/SEV1D e posteriormente com uso do programa EGSLIB/SEV1DINV, permitindo estabelecer modelos geoelétricos aproximados para a configuração da subsuperfície da cidade. Depois da interpretação quantitativa, foi possível separar duas zonas geoelétricas distintas. Esta diferenciação foi realizada com base nos valores de resistividade aparente e as informações geológicas de superfície. A primeira, com pouca representatividade na área da cidade, apresenta-se constituída por solo/aterro sobre saprolito de natureza argilo-arenosa recobrindo os granitóides tipo Rio Maria. A segunda composta pelo solo/aterro seguido de um horizonte preenchido por sedimentos arenosos superposto a camada argilo-arenosa e finalmente a rocha sã. Esta seqüência geoelétrica predomina na cidade. Os estratos arenoso e argilo-arenoso apresentam condições potenciais para armazenamento de água.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION Since the initial publication in 2000, Angiotensin II-infused mice have become one of the most popular models to study abdominal aortic aneurysm in a pre-clinical setting. We recently used phase contrast X-ray based computed tomography to demonstrate that these animals develop an apparent luminal dilatation and an intramural hematoma, both related to mural ruptures in the tunica media in the vicinity of suprarenal side branches. AIMS The aim of this narrative review was to provide an extensive overview of small animal applicable techniques that have provided relevant insight into the pathogenesis and morphology of dissecting AAA in mice, and to relate findings from these techniques to each other and to our recent PCXTM-based results. Combining insights from recent and consolidated publications we aimed to enhance our understanding of dissecting AAA morphology and anatomy. RESULTS AND CONCLUSION We analyzed in vivo and ex vivo images of aortas obtained from macroscopic anatomy, histology, high-frequency ultrasound, contrast-enhanced micro-CT, micro-MRI and PCXTM. We demonstrate how in almost all publications the aorta has been subdivided into a part in which an intact lumen lies adjacent to a remodeled wall/hematoma, and a part in which elastic lamellae are ruptured and the lumen appears to be dilated. We show how the novel paradigm fits within the existing one, and how 3D images can explain and connect previously published 2D structures. We conclude that PCXTM-based findings are in line with previous results, and all evidence points towards the fact that dissecting AAAs in Angiotensin II-infused mice are actually caused by ruptures of the tunica media in the immediate vicinity of small side branches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quais propriedades magnéticas são modificadas quando se agrupam átomos de Fe/Co para formar estruturas quasi-2D, se comparadas aos nanofios (quasi-1D) de FexCo1-x? E como estas propriedades reagem com a variação da proporção de Fe/Co nos aglomerados? A fim de responder a estas questões, trímeros de FexCo1-x depositados em Pt(111) são investigados utilizando o método de primeiros princípios Real Space-Linear Muffin-Tin Orbital-Atomic Sphere Approximation (RS-LMTO-ASA) no âmbito da Teoria do Funcional da Densidade (DFT). Diferentes configurações de trímeros triangulares são consideradas, variando-se as posições e a concentração dos átomos de Fe/Co. Neste trabalho, demonstra-se a ocorrência de uma tendência não-linear estritamente decrescente dos momentos orbitais médios como função da concentração de Fe, distinta do encontrado tanto para os nanofios de FexCo1-x (dependência linear) quanto para a monocamada correspondente (dependência não-linear). Os resultados obtidos mostram ainda que os momentos orbitais variam com o ambiente local e com a direção de magnetização, especialmente quando associados aos átomos de Co, em concordância com publicações anteriores. A mudança de dimensionalidade quasi-1D (nanofios) para quasi-2D (trímeros compactos) não afeta o comportamento dos momentos de spin, que permanecem descritos por uma função linear com respeito à proporção de Fe/Co. Ambos o formato e a concentração de Fe nos sistemas apresentam um papel importante nos valores de energia de anisotropia magnética. Em adição, observou-se que o subtrato de Pt opera ativamente na definição das propriedades magnéticas dos aglomerados. Embora todas as configurações lineares e compactas dos aglomerados de FexCo1-x sejam estáveis e exibam interações fortemente ferromagnéticas entre os primeiros vizinhos, nem todas revelaram o ordenamento colinear como estado fundamental, apresentando uma interação de Dzyaloshinskii-Moriya não-desprezível induzida pelo acoplamento spin-órbita. Estes casos específicos são: o trímero triangular de Co puro e o trímero linear (nanofio) de Fe puro, para o qual foi verificado o acoplamento do tipo Ruderman-Kittel-Kasuya-Yosida entre os átomos de Fe constituintes. Os resultados obtidos contribuem para o entendimento de quais mecanismos definem o magnetismo nos trímeros de FexCo1-x/Pt(111), e discutem as questões presentes atualmente na literatura no contexto destes sistemas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Water removal in paper manufacturing is an energy-intensive process. The dewatering process generally consists of four stages of which the first three stages include mechanical water removal through gravity filtration, vacuum dewatering and wet pressing. In the fourth stage, water is removed thermally, which is the most expensive stage in terms of energy use. In order to analyse water removal during a vacuum dewatering process, a numerical model was created by using a Level-Set method. Various different 2D structures of the paper model were created in MATLAB code with randomly positioned circular fibres with identical orientation. The model considers the influence of the forming fabric which supports the paper sheet during the dewatering process, by using volume forces to represent flow resistance in the momentum equation. The models were used to estimate the dry content of the porous structure for various dwell times. The relation between dry content and dwell time was compared to laboratory data for paper sheets with basis weights of 20 and 50 g/m2 exposed to vacuum levels between 20 kPa and 60 kPa. The comparison showed reasonable results for dewatering and air flow rates. The random positioning of the fibres influences the dewatering rate slightly. In order to achieve more accurate comparisons, the random orientation of the fibres needs to be considered, as well as the deformation and displacement of the fibres during the dewatering process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the present work is to gain new insights into the formation mechanism of CdTe magic-sized clusters (MSCs) at low temperatures, as well as on their evolution towards 1D and 2D nanostructures and assemblies thereof, under mild reaction conditions. The reaction system included toluene as solvent, octylamine as primary alkylamine, trioctylphosphine-Te as chalcogenide precursor and Cd(oleate)2 as metal precursor. UV-Vis absorption spectroscopy and transmission electron microscopy (TEM) were used to analyze samples containing concentrations of octylamine of 0.2, 0.8 and 2 M: well-defined, sharp absorption peaks were observed, with peaks maxima at 449, 417 and 373 nm respectively, and 1D structures with a string-like appearance were displayed in the TEM images. Investigating peaks growth, step-wise peaks shift to lower energies and reverse, step-wise peak shift to higher energies allowed to propose a model to describe the system, based on interconnected [CdTe]x cluster units originating an amine-capped, 1-dimensional, polymer-like structure, in which different degrees of electronic coupling between the clusters are held responsible for the different absorption transitions. The many parameters involved in the synthesis procedure were then investigated, starting from the Cd:Te ratio, the role of the amine, the use of different phosphine-Te and Cd precursors. The results allowed to gain important information of the reaction mechanism, as well as on the different behavior of the species featuring the sharp absorption peaks in each case. Using Cd(acetate)2 as metal precursor, 2D structures were found to evolve from the MSCs solutions over time, and their tendency to self-assemble was then analyzed employing two amines of different alkyl chain length, octylamine (C-8) and oleylamine (C-18). Their co-presence led to the formation of free-floating triangular nanosheets, which tend to readily aggregate if only octylamine is present in solution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

feature extraction, feature tracking, vector field visualization

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: The yeast Schizosaccharomyces pombe is frequently used as a model for studying the cell cycle. The cells are rod-shaped and divide by medial fission. The process of cell division, or cytokinesis, is controlled by a network of signaling proteins called the Septation Initiation Network (SIN); SIN proteins associate with the SPBs during nuclear division (mitosis). Some SIN proteins associate with both SPBs early in mitosis, and then display strongly asymmetric signal intensity at the SPBs in late mitosis, just before cytokinesis. This asymmetry is thought to be important for correct regulation of SIN signaling, and coordination of cytokinesis and mitosis. In order to study the dynamics of organelles or large protein complexes such as the spindle pole body (SPB), which have been labeled with a fluorescent protein tag in living cells, a number of the image analysis problems must be solved; the cell outline must be detected automatically, and the position and signal intensity associated with the structures of interest within the cell must be determined. RESULTS: We present a new 2D and 3D image analysis system that permits versatile and robust analysis of motile, fluorescently labeled structures in rod-shaped cells. We have designed an image analysis system that we have implemented as a user-friendly software package allowing the fast and robust image-analysis of large numbers of rod-shaped cells. We have developed new robust algorithms, which we combined with existing methodologies to facilitate fast and accurate analysis. Our software permits the detection and segmentation of rod-shaped cells in either static or dynamic (i.e. time lapse) multi-channel images. It enables tracking of two structures (for example SPBs) in two different image channels. For 2D or 3D static images, the locations of the structures are identified, and then intensity values are extracted together with several quantitative parameters, such as length, width, cell orientation, background fluorescence and the distance between the structures of interest. Furthermore, two kinds of kymographs of the tracked structures can be established, one representing the migration with respect to their relative position, the other representing their individual trajectories inside the cell. This software package, called "RodCellJ", allowed us to analyze a large number of S. pombe cells to understand the rules that govern SIN protein asymmetry. CONCLUSIONS: "RodCell" is freely available to the community as a package of several ImageJ plugins to simultaneously analyze the behavior of a large number of rod-shaped cells in an extensive manner. The integration of different image-processing techniques in a single package, as well as the development of novel algorithms does not only allow to speed up the analysis with respect to the usage of existing tools, but also accounts for higher accuracy. Its utility was demonstrated on both 2D and 3D static and dynamic images to study the septation initiation network of the yeast Schizosaccharomyces pombe. More generally, it can be used in any kind of biological context where fluorescent-protein labeled structures need to be analyzed in rod-shaped cells. AVAILABILITY: RodCellJ is freely available under http://bigwww.epfl.ch/algorithms.html, (after acceptance of the publication).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Flood simulation studies use spatial-temporal rainfall data input into distributed hydrological models. A correct description of rainfall in space and in time contributes to improvements on hydrological modelling and design. This work is focused on the analysis of 2-D convective structures (rain cells), whose contribution is especially significant in most flood events. The objective of this paper is to provide statistical descriptors and distribution functions for convective structure characteristics of precipitation systems producing floods in Catalonia (NE Spain). To achieve this purpose heavy rainfall events recorded between 1996 and 2000 have been analysed. By means of weather radar, and applying 2-D radar algorithms a distinction between convective and stratiform precipitation is made. These data are introduced and analyzed with a GIS. In a first step different groups of connected pixels with convective precipitation are identified. Only convective structures with an area greater than 32 km2 are selected. Then, geometric characteristics (area, perimeter, orientation and dimensions of the ellipse), and rainfall statistics (maximum, mean, minimum, range, standard deviation, and sum) of these structures are obtained and stored in a database. Finally, descriptive statistics for selected characteristics are calculated and statistical distributions are fitted to the observed frequency distributions. Statistical analyses reveal that the Generalized Pareto distribution for the area and the Generalized Extreme Value distribution for the perimeter, dimensions, orientation and mean areal precipitation are the statistical distributions that best fit the observed ones of these parameters. The statistical descriptors and the probability distribution functions obtained are of direct use as an input in spatial rainfall generators.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate the differences --- conceptually and algorithmically --- between affine and projective frameworks for the tasks of visual recognition and reconstruction from perspective views. It is shown that an affine invariant exists between any view and a fixed view chosen as a reference view. This implies that for tasks for which a reference view can be chosen, such as in alignment schemes for visual recognition, projective invariants are not really necessary. We then use the affine invariant to derive new algebraic connections between perspective views. It is shown that three perspective views of an object are connected by certain algebraic functions of image coordinates alone (no structure or camera geometry needs to be involved).