994 resultados para 291800 Interdisciplinary Engineering
Resumo:
Optimal operation and maintenance of engineering systems heavily rely on the accurate prediction of their failures. Most engineering systems, especially mechanical systems, are susceptible to failure interactions. These failure interactions can be estimated for repairable engineering systems when determining optimal maintenance strategies for these systems. An extended Split System Approach is developed in this paper. The technique is based on the Split System Approach and a model for interactive failures. The approach was applied to simulated data. The results indicate that failure interactions will increase the hazard of newly repaired components. The intervals of preventive maintenance actions of a system with failure interactions, will become shorter compared with scenarios where failure interactions do not exist.
Resumo:
This paper presents the method and results of a survey of 27 of the 33 Australian universities teaching engineering education in late 2007, undertaken by The Natural Edge Project (hosted by Griffith University and the Australian National University) and supported by the National Framework for Energy Efficiency. This survey aimed to ascertain the extent of energy efficiency (EE) education, and to identify preferred methods to assist in increasing the extent to which EE education is embedded in engineering curriculum. In this paper the context for the survey is supported by a summary of the key results from a variety of surveys undertaken over the last decade internationally. The paper concludes that EE education across universities and engineering disciplines in Australia is currently highly variable and ad hoc. Based on the results of the survey, this paper highlights a number of preferred options to support educators to embed sustainability within engineering programs, and future opportunities for monitoring EE, within the context of engineering education for sustainable development (EESD).
Resumo:
At the end of the first decade of the twenty-first century, there is unprecedented awareness of the need for a transformation in development, to meet the needs of the present while also preserving the ability of future generations to meet their own needs. However, within engineering, educators still tend to regard such development as an ‘aspect’ of engineering rather than an overarching meta-context, with ad hoc and highly variable references to topics. Furthermore, within a milieu of interpretations there can appear to be conflicting needs for achieving sustainable development, which can be confusing for students and educators alike. Different articulations of sustainable development can create dilemmas around conflicting needs for designers and researchers, at the level of specific designs and (sub-) disciplinary analysis. Hence sustainability issues need to be addressed at a meta-level using a whole of system approach, so that decisions regarding these dilemmas can be made. With this appreciation, and in light of curriculum renewal challenges that also exist in engineering education, this paper considers how educators might take the next step to move from sustainable development being an interesting ‘aspect’ of the curriculum, to sustainable development as a meta-context for curriculum renewal. It is concluded that capacity building for such strategic considerations is critical in engineering education.
Resumo:
This paper describes and analyses an innovative engineering management course that applies a project management framework in the context of a feasibility study for a prospective research project. The aim is to have students learn aspects of management that will be relevant from the outset of their professional career while simultaneously having immediate value in helping them to manage a research project and capstone design project in their senior year. An integral part of this innovation was the development of a web-based project management tool. While the main objectives of the new course design were achieved, a number of important lessons were learned that would guide the further development and continuous improvement of this course. The most critical of these is the need to achieve the optimum balance in the mind of the students between doing the project and critically analyzing the processes used to accomplish the work.
Resumo:
CO2 Geosequestration is seen by many worldwide scientists and engineers as a leading prospective solution to the global warming problem arising from excessive CO2 and other greenhouse gas emissions. CO2 geosequestration in coal seams has two important strategic benefits: the process has an extremely low risk of leakage, due to the adsorbed state of the CO2 and the known reservoir context of essentially-zero leakage into which it is be injected; the second benefit arises from the valuable by-product, clean burning coalbed methane gas. This paper presents the authors’ experience, knowledge and perspective on what coal properties and engineering processes would favour implementing a demonstration or commercial CO2 storage-in-coal project, in Queensland, Australia. As such, it may be considered a template for screening studies to select the optimum coal seam reservoir, and for preliminary studies in designing the injection system and predicting production response to the technology. The paper concludes by examining the current knowledge gaps of CO2 geosequestration in coal, identifying further basic and applied research topics.
Resumo:
There has been considerable debate about the need for more empirical, evidence based studies of the impact of various interventions and practices in engineering education. A number of resources including workshops to guide engineering faculty in the conduct of such studies have emerged over recent years. This paper presents a critique of the evolution of engineering education research and its underlying assumptions in the context of the systemic reform currently underway in engineering education. This critique leads to an analysis of the ways in which our current understanding of engineering, engineering education and research in engineering education is shaped by the traditions and cultural characteristics of the profession and grounded, albeit implicitly, in a particular suite of epistemological assumptions. It is argued that the whole enterprise of engineering education needs to be radically reconceptualized. A pluralistic approach to framing scholarship in engineering education is then proposed based on the principles of demonstrable practicality, critical interdisciplinarity and holistic reflexivity. This new framework has implications for engaging and developing faculty in the context of new teaching and learning paradigms, for the evaluation of the scholarship of teaching and for the research-teaching nexus.
Resumo:
Much research has focused on students’ transition from secondary school to university. Less is known about the transition from first to second year of a university degree programme. Given the difficulties that many students face at this stage of their education, research into the relevant factors is required. Through questionnaires and focus groups, views of second- and third-year aerospace and mechanical engineering students in our university have been gathered. A large majority believed that both the volume and difficulty of work increased in second year. Many stated that first year was slightly too trivial and could have been made more challenging to prepare them better for second year. Different teaching and assessment styles in second year were considered to affect attendance and performance. The survey revealed that students were generally very well settled into university life by the end of first year and were happy with their choice of course and only 23% reported that financial responsibilities have had a negative effect on their academic performance. Differences were observed between male and female students. Male students believed that transition was helped by having regular assessments and by worked examples in lectures. Females found the teaching staff were the most helpful factor for a successful transition. The results indicate that males require more structure and guidance whereas females are more independent and settle in better.