999 resultados para 290801 Structural Engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A teaching and learning development project is currently under way at Queensland University of Technology to develop advanced technology videotapes for use with the delivery of structural engineering courses. These tapes consist of integrated computer and laboratory simulations of important concepts, and behaviour of structures and their components for a number of structural engineering subjects. They will be used as part of the regular lectures and thus will not only improve the quality of lectures and learning environment, but also will be able to replace the ever-dwindling laboratory teaching in these subjects. The use of these videotapes, developed using advanced computer graphics, data visualization and video technologies, will enrich the learning process of the current diverse engineering student body. This paper presents the details of this new method, the methodology used, the results and evaluation in relation to one of the structural engineering subjects, steel structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A great number of research organisations in Japan have been conducting structural steel experiments for many years, particularly seismic tests of steel structures like cyclic-loading and pseudo-dynamic tests, in order to determine their seismic performances. However, the original test data gained by most research organisations are not well stored in an appropriate manner for distribution and possible usage by others. With the rapid development of information networks, structural engineers and researchers are able to exchange various types of test data through the Internet. In this paper, the authors present the development of a distributed collaborative database system for structural steel experiments. The database is made available on the Internet, and the use of Java language enables efficient interactive retrieval. The potential applications of the developed database system for structural engineering education are validated for the retrieval of experimental data and seismic numerical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Shannon/Nyquist sampling theorem specifies that to avoid losing information when capturing a signal, one must sample at least two times faster than the signal bandwidth. In order to capture and represent compressible signals at a rate significantly below the Nyquist rate, a new method, called compressive sensing (CS), is therefore proposed. CS theory asserts that one can recover certain signals from far fewer samples or measurements than traditional methods use. It employs non-adaptive linear projections that preserve the structure of the sparse signal; the signal is then reconstructed from these projections using an optimization process. It is believed that CS has far reaching implications, while most publications concentrate on signal processing fields (especially for images). In this paper, we provide a concise introduction of CS and then discuss some of its potential applications in structural engineering. The recorded vibration time history of a steel beam and the wave propagation result on a steel rebar are studied in detail. CS is adopted to reconstruct the time histories by using only parts of the signals. The results under different conditions are compared, which confirm that CS will be a promising tool for structural engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among many structural health monitoring (SHM) methods, guided wave (GW) based method has been found as an effective and efficient way to detect incipient damages. In comparison with other widely used SHM methods, it can propagate in a relatively long range and be sensitive to small damages. Proper use of this technique requires good knowledge of the effects of damage on the wave characteristics. This needs accurate and computationally efficient modeling of guide wave propagation in structures. A number of different numerical computational techniques have been developed for the analysis of wave propagation in a structure. Among them, Spectral Element Method (SEM) has been proposed as an efficient simulation technique. This paper will focus on the application of GW method and SEM in structural health monitoring. The GW experiments on several typical structures will be introduced first. Then, the modeling techniques by using SEM are discussed. © (2014) Trans Tech Publications, Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with quality level prediction in concrete structures through the helpful assistance of an expert system wich is able to apply reasoning to this field of structural engineering. Evidences, hypotheses and factors related to this human knowledge field have been codified into a Knowledge Base in terms of probabilities for the presence of either hypotheses or evidences,and conditional presence of both. Human experts in structural engineering and safety of structures gave their invaluable knowledge and assistance necessary when constructing the "computer knowledge body".