977 resultados para 28-269A
Resumo:
Rare earth element (REE), major, and trace element abundances and relative fractionations in forty nodular cherts sampled by the Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) indicate that the REE composition of chert records the interplay between terrigenous sources and scavenging from the local seawater. Major and (non-REE) trace element ratios indicate that the aluminosilicate fraction within the chert is similar to NASC (North American Shale Composite), with average Pacific chert including ~7% NASC-like particles, Indian chert ~11% NASC, Atlantic chert ~17% NASC, and southern high latitude (SHL) chert 53% NASC. Using La as a proxy for sum REE, approximations of excessive La (the amount of La in excess of that supplied by the detrital aluminosilicate fraction) indicate that Pacific chert contains the greatest excessive La (85% of total La) and SHL chert the least (38% of total La). As shown by interelement associations, this excessive La is most likely an adsorbed component onto aluminosilicate and phosphatic phases. Accordingly, chert from the large Pacific Ocean, where deposition occurs relatively removed from significant terrigenous input, records a depositional REE signal dominated by adsorption of dissolved REEs from seawater. Pacific chert Ce/Ce* <<1 and normative La/Yb ~ 0.8-1, resulting from adsorption of local Ce-depleted seawater and preferential adsorption of LREEs from seawater (e.g., normative La/Yb ~0.4), which increases the normative La/Yb ratio recorded in chert. Chert from the Atlantic basin, a moderately sized ocean basin lined by passive margins and with more terrigenous input than the Pacific, records a mix of adsorptive and terrigenous REE signals, with moderately negative Ce anomalies and normative La/Yb ratios intermediate to those of the Pacific and those of terrigenous input. Chert from the SHL region is dominated by the large terrigenous input on the Antarctic passive margin, with inherited Ce/Ce* ~1 and inherited normative La/Yb values of ~1.2-1.4. Ce/Ce* does not vary with age, either throughout the entire data base or within a particular basin. Overall, Ce/Ce* does not correlate with P2O5 concentrations, even though phosphatic phases may be an important REE carrier.
Resumo:
Overcrowding of hospital Emergency Departments (EDs) in Australia is a complex issue of high public and professional prominence, resulted from a combination of increasing demands, increased complexity of care and Access Block. The aim of this study is to describe the distribution of the acuity and severity of current Queensland ED patients to better understand ED users...
Resumo:
Objective To examine the extent to which the odds of birth, pregnancy, or adverse birth outcomes are higher among women aged 28 to 36 years who use fertility treatment compared with untreated women. Design Prospective, population-based. Setting Not applicable. Patient(s) Participants in the ALSWH born in 1973 to 1978 who reported on their infertility and use of in vitro fertilization (IVF) or ovulation induction (OI). Intervention(s) Postal survey questionnaires administered as part of ALSWH. Main Outcome Measure(s) Among women treated with IVF or OI and untreated women, the odds of birth outcomes estimated by use of adjusted logistic regression modeling. Result(s) Among 7,280 women, 18.6% (n = 1,376) reported infertility. Half (53.0%) of the treated women gave birth compared with 43.8% of untreated women. Women with prior parity were less likely to use IVF compared with nulliparous women. Women using IVF or OI, respectively, were more likely to have given birth after treatment or be pregnant compared with untreated women. Women using IVF or OI were as likely to have ectopic pregnancies, stillbirths, or premature or low birthweight babies as untreated women. Conclusion(s) More than 40% of women aged 28–36 years reporting a history of infertility can achieve births without using treatment, indicating they are subfertile rather than infertile.
Resumo:
In a previous study we found evidence for an X-linked genetic component for familial typical migraine in two large Australian white pedigrees, designated MF7 and MF14. Significant excess allele sharing was indicated by nonparametric linkage (NPL) analysis using GENEHUNTER (P=0.031 and P=0.012, respectively), with a combined analysis of the two pedigrees showing further increased evidence for linkage, producing a maximum NPL score of 2.87 (P=0.011 ) at DXS 1123 on Xq27. The present study was aimed at refining the localization of the migraine X-chromosomal component by typing additional markers, performing haplotype analysis and applying a more powerful technique in the analysis of linkage data from these two pedigrees. Results from the haplotype analyses, coupled with linkage analyses that produced a peak GENEHUNTER-PLUS LOD* score of 2.388 (P=0.0005), provide compelling evidence for the presence of a migraine susceptibility locus on chromosome Xq24-28.
Resumo:
Vibrational spectroscopy enables subtle details of the molecular structure of whiteite to be determined. Single crystals of a pure phase from a Brazilian pegmatite were used. The infrared and Raman spectroscopy were applied to compare the molecular structure of whiteite with that of other phosphate minerals. The Raman spectrum of whiteite shows an intense band at 972 cm-1 assigned to the m1 PO3- 4 symmetric stretching vibrations. The low intensity Raman bands at 1076 and 1173 cm-1 are assigned to the m3 PO3- 4 antisymmetric stretching modes. The Raman bands at 1266, 1334 and 1368 cm-1 are assigned to AlOH deformation modes. The infrared band at 967 cm-1 is ascribed to the PO3- 4 m1 symmetric stretching vibrational mode. The infrared bands at 1024, 1072, 1089 and 1126 cm-1 are attributed to the PO3-4 m3 antisymmetric stretching vibrations. Raman bands at 553, 571 and 586 cm-1 are assigned to the m4 out of plane bending modes of the PO3- 4 unit. Raman bands at 432, 457, 479 and 500 cm-1 are attributed to the m2 PO4 and H2PO4 bending modes. In the 2600 to 3800 cm-1 spectral range, Raman bands for whiteite are found 3426, 3496 and 3552 cm-1 are assigned to AlOH stretching vibrations. Broad infrared bands are also found at 3186 cm-1. Raman bands at 2939 and 3220 cm-1 are assigned to water stretching vibrations. Raman spectroscopy complimented with infrared spectroscopy has enabled aspects of the structure of whiteite to be ascertained and compared with that of other phosphate minerals.