1000 resultados para 28-268


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediments from Ocean Drilling Program Site 1165 in the Indian Ocean sector of the Southern Ocean (off Prydz Bay) contain a series of layers that are rich in ice-rafted debris (IRD). Here we present evidence that IRD-rich layers at Site 1165 at 7, 4.8, and 3.5 Ma record short-lived, massive discharges of icebergs from Wilkes Land and Adélie Land, more than 1500 kilometers to the east of the depositional site. This distant source of icebergs is clearly defined by the presence of IRD hornblende grains with 40Ar/39Ar ages of 1200-1100 Ma and 1550-1500 Ma, ages that are not found on the East Antarctic continent in locations closer to Site 1165. This observation requires enormous amounts of detritus-carrying drifting icebergs, most likely in the form of large icebergs. These events probably reflect destabilization, surge, and break-up of ice streams on the Wilkes Land and Adélie Land margins of the East Antarctic Ice Sheet, in the vicinity of the low-lying Aurora and Wilkes Basins. They occurred under warming conditions, but each coast seems to have produced ice-rafting events independently, at different times. The data presented here constitute the first evidence of far-traveled icebergs from specific source areas around the East Antarctic perimeter. Launch of these icebergs may have happened during quite dramatic events, perhaps analogous to "Heinrich Events" in the North Atlantic.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Neogene and Quaternary sedimentary record of Leg 71 and previously drilled sequences from the Southern Ocean reveal evidence of a major late Miocene change of oceanic and glacial conditions in the southern high latitudes during paleomagnetic Chron 9. The characteristics of late Miocene sedimentation and in particular the study of erosional patterns and ice-rafted debris suggest the following conclusions. 1) In the late Miocene, the Polar Front first migrated to the northern latitudes of the Southern Ocean and surface water temperatures became similar to those of today. 2) Extensive ice shelves or ice tongues were not present along the Antarctic margin until late Chron 9 (about 9.0 Ma). 3) Before Chron 9, West Antarctica was occupied by an archipelago and the West Antarctic Sea. 4) Extensive ice shelves formed in the West Antarctic region, eventually coalescing and thickening to form the grounded West Antarctic ice sheet by Chron 9. 5) The newly formed West Antarctic ice sheet was probably unstable and frequently became an ungrounded ice shelf, thus accounting for the scarcity of late Miocene ice-rafted debris. 6) Extensive erosion or nondeposition of sediment was probably the result of increased Antarctic Bottom Water (AABW) formation in the West Antarctic region during the initial formation of extensive West Antarctic ice shelves and during periods when the West Antarctic ice sheet was ungrounded. 7) In the Southwest Atlantic, AABW velocity waned during the latest Miocene. During the late Gilbert Chron a major and permanent change occurred in the pattern of ice-rafting to the South Atlantic, and after 4.35 Ma the increased IRD accumulation rate and frequency of major episodes of IRD accumulation suggest increased stability of the West Antarctic ice sheet. In addition, radiolarian faunas of Hole 514 record at least eight migrations of the Polar Front to the north of the site during the past 4.07 m.y. An apparent increase in the frequency of Polar Front migrations occurred about 2.7-2.6 Ma, possibly in response to oceanic change induced by fluctuations in glacial conditions of the Northern Hemisphere.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rare earth element (REE), major, and trace element abundances and relative fractionations in forty nodular cherts sampled by the Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) indicate that the REE composition of chert records the interplay between terrigenous sources and scavenging from the local seawater. Major and (non-REE) trace element ratios indicate that the aluminosilicate fraction within the chert is similar to NASC (North American Shale Composite), with average Pacific chert including ~7% NASC-like particles, Indian chert ~11% NASC, Atlantic chert ~17% NASC, and southern high latitude (SHL) chert 53% NASC. Using La as a proxy for sum REE, approximations of excessive La (the amount of La in excess of that supplied by the detrital aluminosilicate fraction) indicate that Pacific chert contains the greatest excessive La (85% of total La) and SHL chert the least (38% of total La). As shown by interelement associations, this excessive La is most likely an adsorbed component onto aluminosilicate and phosphatic phases. Accordingly, chert from the large Pacific Ocean, where deposition occurs relatively removed from significant terrigenous input, records a depositional REE signal dominated by adsorption of dissolved REEs from seawater. Pacific chert Ce/Ce* <<1 and normative La/Yb ~ 0.8-1, resulting from adsorption of local Ce-depleted seawater and preferential adsorption of LREEs from seawater (e.g., normative La/Yb ~0.4), which increases the normative La/Yb ratio recorded in chert. Chert from the Atlantic basin, a moderately sized ocean basin lined by passive margins and with more terrigenous input than the Pacific, records a mix of adsorptive and terrigenous REE signals, with moderately negative Ce anomalies and normative La/Yb ratios intermediate to those of the Pacific and those of terrigenous input. Chert from the SHL region is dominated by the large terrigenous input on the Antarctic passive margin, with inherited Ce/Ce* ~1 and inherited normative La/Yb values of ~1.2-1.4. Ce/Ce* does not vary with age, either throughout the entire data base or within a particular basin. Overall, Ce/Ce* does not correlate with P2O5 concentrations, even though phosphatic phases may be an important REE carrier.