979 resultados para 240402 Quantum Optics and Lasers
Resumo:
In the usual formulation of quantum mechanics, groups of automorphisms of quantum states have ray representations by unitary and antiunitary operators on complex Hilbert space, in accordance with Wigner's theorem. In the phase-space formulation, they have real, true unitary representations in the space of square-integrable functions on phase space. Each such phase-space representation is a Weyl–Wigner product of the corresponding Hilbert space representation with its contragredient, and these can be recovered by 'factorizing' the Weyl–Wigner product. However, not every real, unitary representation on phase space corresponds to a group of automorphisms, so not every such representation is in the form of a Weyl–Wigner product and can be factorized. The conditions under which this is possible are examined. Examples are presented.
Resumo:
We propose macroscopic generalizations of the Einstein-Podolsky-Rosen paradox in which the completeness of quantum mechanics is contrasted with forms of macroscopic reality and macroscopic local reality defined in relation to Schrodinger's original 'cat' paradox.
Resumo:
Photo-detection plays a fundamental role in experimental quantum optics and is of particular importance in the emerging field of linear optics quantum computing. Present theoretical treatment of photo-detectors is highly idealized and fails to consider many important physical effects. We present a physically motivated model for photo-detectors which accommodates for the effects of finite resolution, bandwidth and efficiency, as well as dark counts and dead-time. We apply our model to two simple well-known applications, which illustrates the significance of these characteristics.
Resumo:
Quantum computers promise to increase greatly the efficiency of solving problems such as factoring large integers, combinatorial optimization and quantum physics simulation. One of the greatest challenges now is to implement the basic quantum-computational elements in a physical system and to demonstrate that they can be reliably and scalably controlled. One of the earliest proposals for quantum computation is based on implementing a quantum bit with two optical modes containing one photon. The proposal is appealing because of the ease with which photon interference can be observed. Until now, it suffered from the requirement for non-linear couplings between optical modes containing few photons. Here we show that efficient quantum computation is possible using only beam splitters, phase shifters, single photon sources and photo-detectors. Our methods exploit feedback from photo-detectors and are robust against errors from photon loss and detector inefficiency. The basic elements are accessible to experimental investigation with current technology.
Resumo:
We review recent developments in quantum and classical soliton theory, leading to the possibility of observing both classical and quantum parametric solitons in higher-dimensional environments. In particular, we consider the theory of three bosonic fields interacting via both parametric (cubic) and quartic couplings. In the case of photonic fields in a nonlinear optical medium this corresponds to the process of sum frequency generation (via chi((2)) nonlinearity) modified by the chi((3)) nonlinearity. Potential applications include an ultrafast photonic AND-gate. The simplest quantum solitons or energy eigenstates (bound-state solutions) of the interacting field Hamiltonian are obtained exactly in three space dimensions. They have a point-like structure-even though the corresponding classical theory is nonsingular. We show that the solutions can be regularized with the imposition of a momentum cut-off on the nonlinear couplings. The case of three-dimensional matter-wave solitons in coupled atomic/molecular Bose-Einstein condensates is discussed.
Resumo:
Cold rubidium atoms are subjected to an amplitude-modulated far-detuned standing wave of light to form a quantum-driven pendulum. Here we discuss the dynamics of these atoms. Phase space resonances and chaotic transients of the system exhibit dynamics which can be useful in many atom optics applications as they can be utilized as means for phase space state preparation. We explain the occurrence of distinct peaks in the atomic momentum distribution, analyse them in detail and give evidence for the importance of the system for quantum chaos and decoherence studies.
Resumo:
We present a scheme which offers a significant reduction in the resources required to implement linear optics quantum computing. The scheme is a variation of the proposal of Knill, Laflamme and Milburn, and makes use of an incremental approach to the error encoding to boost probability of success.
Resumo:
We examine the physical significance of fidelity as a measure of similarity for Gaussian states by drawing a comparison with its classical counterpart. We find that the relationship between these classical and quantum fidelities is not straightforward, and in general does not seem to provide insight into the physical significance of quantum fidelity. To avoid this ambiguity we propose that the efficacy of quantum information protocols be characterized by determining their transfer function and then calculating the fidelity achievable for a hypothetical pure reference input state. (c) 2007 Optical Society of America.
Resumo:
Cold atoms in optical potentials provide an ideal test bed to explore quantum nonlinear dynamics. Atoms are prepared in a magneto-optic trap or as a dilute Bose-Einstein condensate and subjected to a far detuned optical standing wave that is modulated. They exhibit a wide range of dynamics, some of which can be explained by classical theory while other aspects show the underlying quantum nature of the system. The atoms have a mixed phase space containing regions of regular motion which appear as distinct peaks in the atomic momentum distribution embedded in a sea of chaos. The action of the atoms is of the order of Planck's constant, making quantum effects significant. This tutorial presents a detailed description of experiments measuring the evolution of atoms in time-dependent optical potentials. Experimental methods are developed providing means for the observation and selective loading of regions of regular motion. The dependence of the atomic dynamics on the system parameters is explored and distinct changes in the atomic momentum distribution are observed which are explained by the applicable quantum and classical theory. The observation of a bifurcation sequence is reported and explained using classical perturbation theory. Experimental methods for the accurate control of the momentum of an ensemble of atoms are developed. They use phase space resonances and chaotic transients providing novel ensemble atomic beamsplitters. The divergence between quantum and classical nonlinear dynamics is manifest in the experimental observation of dynamical tunnelling. It involves no potential barrier. However a constant of motion other than energy still forbids classically this quantum allowed motion. Atoms coherently tunnel back and forth between their initial state of oscillatory motion and the state 180 out of phase with the initial state.
Resumo:
We outline a toolbox comprised of passive optical elements, single photon detection and superpositions of coherent states (Schrodinger cat states). Such a toolbox is a powerful collection of primitives for quantum information processing tasks. We illustrate its use by outlining a proposal for universal quantum computation. We utilize this toolbox for quantum metrology applications, for instance weak force measurements and precise phase estimation. We show in both these cases that a sensitivity at the Heisenberg limit is achievable.