986 resultados para 240304 Other Plasma Physics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of electromagnetic radiation with plasmas is studied in relativistic four-vector formalism. A gauge and Lorentz invariant ponderomotive four-force is derived from the time dependent nonlinear three-force of Hora (1985). This four-force, due to its Lorentz invariance, contains new magnetic field terms. A new gauge and Lorentz invariant model of the response of plasma to electromagnetic radiation is then devised. An expression for the dispersion relation is obtained from this model. It is then proved that the magnetic permeability of plasma is unity for a general reference frame. This is an important result since it has been previously assumed in many plasma models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiscale hybrid simulations that bridge the nine-order-of-magnitude spatial gap between the macroscopic plasma nanotools and microscopic surface processes on nanostructured solids are described. Two specific examples of carbon nanotip-like and semiconductor quantum dot nanopatterns are considered. These simulations are instrumental in developing physical principles of nanoscale assembly processes on solid surfaces exposed to low-temperature plasmas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Terawatt Apparatus for Relativistic And Non-linear Interdisciplinary Science (TARANIS), installed in the Centre for Plasma Physics at the Queen's University Belfast, supports a wide ranging science program, including laser-driven particle acceleration, X-ray lasers and high energy density physics experiments. We present (1) an overview of the laser facility, (2) results of preliminary investigations on proton acceleration, laser action at 13.9 nm and Kα sources and (3) speculation on future experiments using these extreme sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractal structures appear in many situations related to the dynamics of conservative as well as dissipative dynamical systems, being a manifestation of chaotic behaviour. In open area-preserving discrete dynamical systems we can find fractal structures in the form of fractal boundaries, associated to escape basins, and even possessing the more general property of Wada. Such systems appear in certain applications in plasma physics, like the magnetic field line behaviour in tokamaks with ergodic limiters. The main purpose of this paper is to show how such fractal structures have observable consequences in terms of the transport properties in the plasma edge of tokamaks, some of which have been experimentally verified. We emphasize the role of the fractal structures in the understanding of mesoscale phenomena in plasmas, such as electromagnetic turbulence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review paper presents historical perspectives, recent advances and future directions in the multidisciplinary research field of plasma nanoscience. The current status and future challenges are presented using a three-dimensional framework. The first and the largest dimension covers the most important classes of nanoscale objects (nanostructures, nanofeatures and nanoassemblies/nanoarchitectures) and materials systems, namely carbon nanotubes, nanofibres, graphene, graphene nanoribbons, graphene nanoflakes, nanodiamond and related carbon-based nanostructures; metal, silicon and other inorganic nanoparticles and nanostructures; soft organic nanomaterials; nano-biomaterials; biological objects and nanoscale plasma etching. In the second dimension, we discuss the most common types of plasmas and plasma reactors used in nanoscale plasma synthesis and processing. These include low-temperature non-equilibrium plasmas at low and high pressures, thermal plasmas, high-pressure microplasmas, plasmas in liquids and plasma–liquid interactions, high-energy-density plasmas, and ionized physical vapour deposition as well as some other plasma-enhanced nanofabrication techniques. In the third dimension, we outline some of the 'Grand Science Challenges' and 'Grand Socio-economic Challenges' to which significant contributions from plasma nanoscience-related research can be expected in the near future. The urgent need for a stronger focus on practical, outcome-oriented research to tackle the grand challenges is emphasized and concisely formulated as from controlled complexity to practical simplicity in solving grand challenges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Precise control of composition and internal structure is essential for a variety of novel technological applications which require highly tailored binary quantum dots (QDs) with predictable optoelectronic and mechanical properties. The delicate balancing act between incoming flux and substrate temperature required for the growth of compositionally graded (Si1-xC x; x varies throughout the internal structure), core-multishell (discrete shells of Si and C or combinations thereof) and selected composition (x set) QDs on low-temperature plasma/ion-flux-exposed Si(100) surfaces is investigated via a hybrid numerical simulation. Incident Si and C ions lead to localized substrate heating and a reduction in surface diffusion activation energy. It is shown that by incorporating ions in the influx, a steady-state composition is reached more quickly (for selected composition QDs) and the composition gradient of a Si1-xCx QD may be fine tuned; additionally (with other deposition conditions remaining the same), larger QDs are obtained on average. It is suggested that ionizing a portion of the influx is another way to control the average size of the QDs, and ultimately, their internal structure. Advantages that can be gained by utilizing plasma/ion-related controls to facilitate the growth of highly tailored, compositionally controlled quantum dots are discussed as well.