1000 resultados para 24-Ethylcholest-5-en-3beta-ol per unit mass total organic carbon
Resumo:
Within the Russian-German research project on "Siberian River Run-off (SIRRO)" devoted to the freshwater discharge and its influence on biological, geochemical, and geological processes in the Kara Sea, sedimentological and organic-geochemical investigations were carried-out on two well-dated sediment cores from the Yenisei Estuary area. The main goal of this study was to quantify the terrigenous organic carbon accumulation based on biomarker and bulk accumulation rate data, and its relationship to Yenisei river discharge and climate change through Holocene times. The biomarker data at both cores clearly indicate the predominance of terrigenous organic matter, reaching 70 to 100% and 50 to 80% of the total organic carbon within and directly north of the estuary, respectively. During the last about 9 Cal. kyrs. BP represented in the studied sediment section, siliciclastic sediment and (terrigenous) organic carbon input was strongly influenced by postglacial sea-level rise and climate-related changes in river discharge. The mid-Holocene Climatic Optimum is documented by maximum river discharge between 8.2 and 7.3 Cal. kyrs. BP. During the last 2000 years river discharge probably became reduced, and accumulation of both terrigenous and marine organic carbon increased due to increased coagulation of fine-grained material.
Resumo:
Although the permanently to seasonally ice-covered Arctic Ocean is a unique and sensitive component in the Earth's climate system, the knowledge of its long-term climate history remains very limited due to the restricted number of pre-Quaternary sedimentary records. During Polarstern Expedition PS87/2014, we discovered multiple submarine landslides over a distance of >350 km along Lomonosov Ridge. Removal of younger sediments from steep headwalls has led to exhumation of Miocene to early Quaternary sediments close to the seafloor, allowing the retrieval of such old sediments with gravity cores. Multi-proxy biomarker analyses of these gravity cores reveal for the first time that the late Miocene central Arctic Ocean was relatively warm (4-7°C) and ice-free during summer, whereas sea ice occurred during spring and autumn/winter. A comparison of our proxy data with Miocene climate simulations seems to favour relatively high late Miocene atmospheric CO2 concentrations. These new findings from the Arctic region provide new benchmarks for groundtruthing global climate reconstructions and modeling.
Resumo:
Organic-geochemical bulk parameter (Total organic carbon contents, C/N ratios and d13Corg values), biogenic opal and biomarkers (n-alkanes, fatty acids, sterols and amino acids) were determined in surface sediments from the Ob and Yenisei estuaries and the adjacent southern Kara Sea. Maximum TOC contents were determined in both estuaries, reaching up to 3 %. Relatively high C/N ratios around 10, light d13Corg values of -26.5 per mil (Yenisei) and -28 to -28.7 per mil (Ob), and maximum concentrations of long-chain n-alkanes of up to about 10 µg/g Sed clearly show the predominance of terrigenous organic matter in the sediments from the estuaries. Towards the open Kara Sea, all p arameters indicate a decrease in terrigenous organic carbon. Brassicasterol as well as the short-chain n-alkanes parallel this trend, suggesting that these biomarkers are probably also related to a terrigenous (fresh-water phytoplankton) source. Amino acid spectra show characteristic trends from the Yenisei Estuary to the open Kara Sea revealing increasing state of degradation. Sedimentary organic matter in the Yenisei Estuary is relatively less degraded compared to the Ob Estuary and the open Kara Sea.
Resumo:
In order to study the modern sea surface characteristics of the sub-polar North Pacific and the Bering Sea, i.e. sea surface temperature (SST) and sea ice cover, surface sediments recovered during the RV Sonne Expedition 202 in 2009 were analysed. To distinguish between marine and terrestrial organic carbon, hydrogen index values, long chain n-alkanes and specific sterols have been determined. The results show that in the Bering Sea, especially on the sea slope, the organic carbon source is mainly caused by high primary production. In the North Pacific, on the other hand, the organic material originates predominantly from terrestrial higher plants, probably related to dust input from Asia. SST has been reconstructed using the modified alkenone unsaturation index. Calibration from Müller et al. (1998, doi:10.1016/S0016-7037(98)00097-0) offers the most reliable estimate of mean annual temperature in the central North Pacific but does not correlate with mean annual temperature throughout the study area. In the eastern North Pacific and the Bering Sea, the Sikes et al. (1997, doi:10.1016/S0016-7037(97)00017-3) calibration seems to be more accurate and matches summer SST. The distribution of the novel sea ice proxy IP25 (highly branched C25 isoprenoid alkene) in surface sediments is in accord with the modern spring sea ice edge and shows the potential of this proxy to track past variation in sea ice cover in the study area.