1000 resultados para 2-methyladenosylhopane
Resumo:
We have investigated the delivery of terrestrial organic carbon (OC) to the Amazon shelf and deep sea fan based on soil marker bacteriohopanepolyols (BHPs; adenosylhopane and related compounds) and branched glycerol dialkyl glycerol tetraethers (GDGTs), as well as on 14C dating of bulk organic matter. The microbial biomarker records show persistent burial of terrestrial OC, evidenced by almost constant and high BIT values (0.6) and soil marker BHP concentration [80-230 µg/g TOC (total OC)] on the late Holocene shelf and even higher BIT values (0.8-0.9), but lower and more variable soil-marker BHP concentration (40-100 µg/g TOC), on the past glacial deep sea fan. Radiocarbon data show that OC on the shelf is 3-4 kyr older than corresponding bivalve shells, emphasizing the presence of old carbon in this setting. We observe comparable and unexpectedly invariant BHP composition in both marine sediment records, with a remarkably high relative abundance of C-35 amino BHPs including compounds specific for aerobic methane oxidation on the shelf (avg. 50% of all BHPs) and the fan (avg. 40%). Notably, these marine BHP signatures are strikingly similar to those of a methane-producing floodplain area in one of the Amazonian wetland (várzea) regions. The observation indicates that BHPs in the marine sediments may have initially been produced within wetland regions of the Amazon basin and may therefore document persistent export from terrestrial wetland regions, with subsequent re-working in the marine environment, both during recent and past glacial climate conditions.
Resumo:
The transport and deposition of terrestrially derived organic matter (TOM) into the ocean is an important but poorly constrained aspect of the modern global carbon cycle. A preliminary study of Late Quaternary sediments from the Congo deep sea fan (ODP leg 175, site 1075, 2 km water depth) and four surface samples from associated cores has confirmed the presence of proposed soil-specific bacteriohopanepolyol biomarkers (BHPs) including adenosylhopane, in samples to a depth of 89 m. Concentrations of soil marker BHPs are high in the upper sediment section (to 49 m) and the closest related surface sample (4913), supporting the case for these molecular markers as novel proxies for soil organic carbon (SOC) supply via riverine transport and subsequent burial. Distinct peaks for the markers at about 21, 34 and 60 m below surface level tentatively imply that the rate of TOM discharge from tropical Africa significantly increased at these times, possibly associated with periods of reduced soil stability in the Congo catchment.