976 resultados para 2-KETO-3-DEOXYGLUCONATE KINASE
Resumo:
Phosphofructokinase-1 and -2 (Pfk-1 and Pfk-2, respectively) from Escherichia coli belong to different homologous superfamilies. However, in spite of the lack of a common ancestor, they share the ability to catalyze the same reaction and are inhibited by the substrate MgATP. Pfk-2, an ATP-dependent 6-phosphofructokinase member of the ribokinase-like superfamily, is a homodimer of 66 kDa subunits whose oligomerization state is necessary for catalysis and stability. The presence of MgATP favors the tetrameric form of the enzyme. In this work, we describe the structure of Pfk-2 in its inhibited tetrameric form, with each subunit bound to two ATP molecules and two Mg ions. The present structure indicates that substrate inhibition occurs due to the sequential binding of two MgATP molecules per subunit, the first at the usual site occupied by the nucleotide in homologous enzymes and the second at the allosteric site, making a number of direct and Mg-mediated interactions with the first. Two configurations are observed for the second MgATP, one of which involves interactions with Tyr23 from the adjacent subunit in the dimer and the other making an unusual non-Watson-Crick base pairing with the adenine in the substrate ATP. The oligomeric state observed in the crystal is tetrameric, and some of the structural elements involved in the binding of the Substrate and allosteric ATPs are also participating in the dimer-dimer interface. This structure also provides the grounds to compare analogous features of the nonhomologous phosphofructokinases from E. coli. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
2-Keto-3-deoxy-6-phosphogluconate (KDPG) aldolase from Pseudomonas putida is a key enzyme in the Entner-Doudoroff pathway which catalyses the cleavage of KDPG via a class I Schiff-base mechanism. The crystal structure of this enzyme has been refined to a crystallographic residual R = 17.1% (R-free = 21.4%). The N-terminal helix caps one side of the torus of the (betaalpha)(8)-barrel and the active site is located on the opposite, carboxylic side of the barrel. The Schiff-base-forming Lys145 is coordinated by a sulfate (or phosphate) ion and two solvent water molecules. The interactions that stabilize the trimer are predominantly hydrophobic, with the exception of the cyclically permuted bonds formed between Glu132 OE1 of one molecule and Thr129 OG1 of a symmetry-equivalent molecule. Except for the N-terminal helix, the structure of KDPG aldolase from P. putida closely resembles the structure of the homologous enzyme from Escherichia coli.
Resumo:
2-Keto-3-deoxy-6-phosphogluconate (KDPG) aldolase catalyzes the reversible cleavage of KDPG to pyruvate and glyceraldehyde-3-phosphate. The enzyme is a class I aldolase whose reaction mechanism involves formation of Schiff base intermediates between Lys-133 and a keto substrate. A covalent adduct was trapped by flash freezing KDPG aldolase crystals soaked with 10 mM pyruvate in acidic conditions at pH 4.6. Structure determination to 1.95-Å resolution showed that pyruvate had undergone nucleophilic attack with Lys-133, forming a protonated carbinolamine intermediate, a functional Schiff base precursor, which was stabilized by hydrogen bonding with active site residues. Carbinolamine interaction with Glu-45 indicates general base catalysis of several rate steps. Stereospecific addition is ensured by aromatic interaction of Phe-135 with the pyruvate methyl group. In the native structure, Lys-133 donates all of its hydrogen bonds, indicating the presence of an ɛ-ammonium salt group. Nucleophilic activation is postulated to occur by proton transfer in the monoprotonated zwitterionic pair (Glu-45/Lys-133). Formation of the zwitterionic pair requires prior side chain rearrangement by protonated Lys-133 to displace a water molecule, hydrogen bonded to the zwitterionic residues.
Resumo:
Lipid A from several strains of the N2-fixing bacterium Rhizobium leguminosarum displays significant structural differences from Escherichia coli lipid A, one of which is the complete absence of phosphate groups. However, the first seven enzymes of E. coli lipid A biosynthesis, leading from UDP-GlcNAc to the phosphorylated intermediate, 2-keto-3-deoxyoctulosonate (Kdo2)-lipid IVA, are present in R. leguminosarum. We now describe a membrane-bound phosphatase in R. leguminosarum extracts that removes the 4' phosphate of Kdo2-lipid IVA. The 4' phosphatase is selective for substrates containing the Kdo domain. It is present in extracts of R. leguminosarum biovars phaseoli, viciae, and trifolii but is not detectable in E. coli and Rhizobium meliloti. A nodulation-defective strain (24AR) of R. leguminosarum biovar trifolii, known to contain a 4' phosphatase residue on its lipid A, also lacks measurable 4' phosphatase activity. The Kdo-dependent 4' phosphatase appears to be a key reaction in a pathway for generating phosphate-deficient lipid A.
Resumo:
The Bacillus subtilis strain 168 chromosomal region extending from 109 degrees to 112 degrees has been sequenced. Among the 35 ORFs identified, cotT and rapA were the only genes that had been previously mapped and sequenced. Out of ten ORFs belonging to a single putative transcription unit, seven are probably involved in hexuronate catabolism. Their sequences are homologous to Escherichia coli genes exuT, uidB, uxaA, uxaB, uxaC, uxuA and uxuB, which are all required for the uptake of free D-glucuronate, D-galacturonate and beta-glucuronide, and their transformation into glyceraldehyde 3-phosphate and pyruvate via 2-keto-3-deoxygluconate. The remaining three ORFs encode two dehydrogenases and a transcriptional regulator. The operon is preceded by a putative catabolite-responsive element (CRE), located between a hypothetical promoter and the RBS of the first gene. This element, the longest and the only so far described that is fully symmetrical, consists of a 26 bp palindrome matching the theoretical B. subtilis CRE sequence. The remaining predicted amino acid sequences that share homologies with other proteins comprise: a cytochrome P-450, a glycosyltransferase, an ATP-binding cassette transporter, a protein similar to the formate dehydrogenase alpha-subunit (FdhA), protein similar to NADH dehydrogenases, and three homologues of polypeptides that have undefined functions.
Resumo:
2-Amino-3-methylimidazo[4,5-f]quinoline (IQ) is one of several mutagenic and carcinogenic heterocyclic amines formed during the cooking process of protein-rich foods, These compounds are highly mutagenic and have been shown to produce tumours in various tissues in rodents and non-human primates. Metabolic activation of IQ is a two-step process involving N-hydroxylation by CYP1A2 followed by esterification to a more reactive species capable of forming adducts with DNA, To date, acetylation and sulphation have been proposed as important pathways in the formation of N-hydroxy esters, In this study we have demonstrated the presence of an ATP-dependent activation pathway for N-hydroxy-IQ (N-OH-IQ) leading to DNA adduct formation measured by covalent binding of [H-3]N-OH-IQ to DNA, ATP-dependent DNA binding of N-OH-IQ was greatest in the cytosolic fraction of rat liver, although significant activity was also seen in colon, pancreas and lung. ATP was able to activate N-OH-IQ almost 10 times faster than N-hydroxy-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (7.7 +/- 0.3 and 0.9 +/- 0.1 pmol/mg protein/min, respectively). Using reported intracellular concentrations of cofactor, the ability of ATP to support DNA binding was similar to that seen with 3'-phosphoadenosine 5'-phosphosulphate and similar to 50% of that seen with acetyl coenzyme A (AcCoA), In addition to DNA binding, HPLC analysis of the reaction mixtures using ATP as co-factor showed the presence of two stable, polar metabolites, With AcCoA, only one metabolite was seen. The kinase inhibitors genistein, tyrphostin A25 and rottlerin significantly inhibited both DNA binding and metabolite formation with ATP. However, inhibition was unlikely to be due to effects on enzyme activity since the broad spectrum kinase inhibitor staurosporine had no effect and the inactive analogue of genistein, daidzein, was as potent as genistein, The effects of genistein and daidzein, which are naturally occurring isoflavones from soy and other food products, on DNA adduct formation may potentially be useful in the prevention of heterocyclic amine-induced carcinogenesis.
Resumo:
To investigate the influence of the pyrimidine 2-keto group on selection of nucleotides for incorporation into DNA by polymerases, we have prepared two C nucleoside triphosphates that are analogues of dCTP and dTTP, namely 2-amino-5-(2'-deoxy-beta-d-ribofuranosyl)pyridine-5'-triphosphate (d*CTP) and 5-(2'-deoxy- beta-d-ribofuranosyl)-3-methyl-2-pyridone-5'-triphosphate (d*TTP) respectively. Both proved strongly inhibitory to PCR catalysed by Taq polymerase; d*TTP rather more so than d*CTP. In primer extension experiments conducted with either Taq polymerase or the Klenow fragment of Escherichia coli DNA polymerase I, both nucleotides failed to substitute for their natural pyrimidine counterparts. Neither derivative was incorporated as a chain terminator. Their capacity to inhibit DNA polymerase activity may well result from incompatibility with the correctly folded form of the polymerase enzyme needed to stabilize the transition state and catalyse phosphodiester bond formation.
Resumo:
The protein kinase inhibitor staurosporine has been shown to induce G1 phase arrest in normal cells but not in most transformed cells. Staurosporine did not induce G1 phase arrest in the bladder carcinoma cell line 5637 that lacks a functional retinoblastoma protein (pRB-). However, when infected with a pRB-expressing retrovirus [Goodrich, D. W., Chen, Y., Scully, P. & Lee, W.-H. (1992) Cancer Res. 52, 1968-1973], these cells, now pRB+, were arrested by staurosporine in G1 phase. This arrest was accompanied by the accumulation of hypophosphorylated pRB. In both the pRB+ and pRB- cells, cyclin D1-associated kinase activities were reduced on staurosporine treatment. In contrast, cyclin-dependent kinase (CDK) 2 and cyclin E/CDK2 activities were inhibited only in pRB+ cells. Staurosporine treatment did not cause reductions in the protein levels of CDK4, cyclin D1, CDK2, or cyclin E. The CDK inhibitor proteins p21(Waf1/Cip1) and p27 (Kip1) levels increased in staurosporine-treated cells. Immunoprecipitation of CDK2, cyclin E, and p2l from staurosporine-treated pRB+ cells revealed a 2.5- to 3-fold higher ratio of p2l bound to CDK2 compared with staurosporine-treated pRB- cells. In pRB+ cells, p2l was preferentially associated with Thrl6O phosphorylated active CDK2. In pRB- cells, however, p2l was bound preferentially to the unphosphorylated, inactive form of CDK2 even though the phosphorylated form was abundant. This is the first evidence suggesting that G1 arrest by 4 nM staurosporine is dependent on a functional pRB protein. Cell cycle arrest at the pRB- dependent checkpoint may prevent activation of cyclin E/CDK2 by stabilizing its interaction with inhibitor proteins p2l and p27.
Resumo:
Agents that damage DNA in Escherichia coli or interfere with its replication induce DNA repair and mutagenesis via the SOS response. This well-known activity is regulated by the RecA protein and the LexA repressor. Following repair or bypass of the DNA lesion, the cell returns to its resting state by a largely unknown process. We found that 2-keto-4-hydroxyglutarate aldolase (4-hydroxy-2-oxoglutarate aldolase; EC 4.1.3.16) is necessary for the recovery of respiration and that it is regulated by the SOS response. This protein was induced by DNA-damaging agents. Induction required RecA activation. When the LexA regulon was repressed, activation of RecA was not sufficient for induction, indicating the requirement for an additional protein under LexA control. Finally, a mutant in the corresponding hga gene was UV sensitive. 2-Keto-4-hydroxyglutarate aldolase also plays a role in respiratory metabolic pathways, which suggests a mechanism for respiration resumption during the termination of the SOS response.
Resumo:
A capillary zone electrophoresis (CE) method was developed for the determination of the biocide 2,2-dibromo-3-nitrilo-propionamide (DBNPA) in water used in cooling systems. The biocide is indirectly determined by CE measurement of the concentration of bromide ions produced by the reaction between the DBNPA and bisulfite. The relationship between the bromide peak areas and the DBNPA concentrations showed a good linearity and a coefficient of determination (R(2)) of 0.9997 in the evaluated concentration range of 0-75 μmol L(-1). The detection and quantification limits for DBNPA were 0.23 and 0.75 μmol L(-1), respectively. The proposed CE method was successfully applied for the analysis of samples of tap water and cooling water spiked with DBNPA. The intra-day and inter-day (intermediary) precisions were lower than 2.8 and 6.2%, respectively. The DBNPA concentrations measured by the CE method were compared to the values obtained by a spectrophotometric method and were found to agree well.
Resumo:
A complex iridium oxide β-Li_{2}IrO_{3} crystallizes in a hyperhoneycomb structure, a three-dimensional analogue of honeycomb lattice, and is found to be a spin-orbital Mott insulator with J_{eff}=1/2 moment. Ir ions are connected to the three neighboring Ir ions via Ir-O_{2}-Ir bonding planes, which very likely gives rise to bond-dependent ferromagnetic interactions between the J_{eff}=1/2 moments, an essential ingredient of Kitaev model with a spin liquid ground state. Dominant ferromagnetic interaction between J_{eff}=1/2 moments is indeed confirmed by the temperature dependence of magnetic susceptibility χ(T) which shows a positive Curie-Weiss temperature θ_{CW}∼+40 K. A magnetic ordering with a very small entropy change, likely associated with a noncollinear arrangement of J_{eff}=1/2 moments, is observed at T_{c}=38 K. With the application of magnetic field to the ordered state, a large moment of more than 0.35 μ_{B}/Ir is induced above 3 T, a substantially polarized J_{eff}=1/2 state. We argue that the close proximity to ferromagnetism and the presence of large fluctuations evidence that the ground state of hyperhoneycomb β-Li_{2}IrO_{3} is located in close proximity of a Kitaev spin liquid.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
The [Ru3O(Ac)6(py)2(CH3OH)]+ cluster provides an effective electrocatalytic species for the oxidation of methanol under mild conditions. This complex exhibits characteristic electrochemical waves at -1.02, 0.15 and 1.18 V, associated with the Ru3III,II,II/Ru3III,III,II/Ru 3III,III,III /Ru3IV,III,III successive redox couples, respectively. Above 1.7 V, formation of two RuIV centers enhances the 2-electron oxidation of the methanol ligand yielding formaldehyde, in agreement with the theoretical evolution of the HOMO levels as a function of the oxidation states. This work illustrates an important strategy to improve the efficiency of the oxidation catalysis, by using a multicentered redox catalyst and accessing its multiple higher oxidation states.
Resumo:
We report large photoluminescence (PL) enhancement in Eu(3+)-doped GeO(2)-Bi(2)O(3) glasses containing gold nanoparticles (NPs). Growth of approximate to 1000% in the PL intensity corresponding to the Eu(3+) transition (5)D(0)->(7)F(2), at 614 nm, was observed in comparison with a reference sample that does not contain gold NPs. Other PL bands from 580 to 700 nm are also enhanced. The enhancement of the PL intensity is attributed to the increased local field in the Eu(3+) locations due to the presence of the NPs and the energy transfer from the excited NPs to the Eu(3+) ions.
Resumo:
Chemical reactivity, photolability, and computational studies of the ruthenium nitrosyl complex with a substituted cyclam, fac-[Ru(NO)Cl(2)(kappa(3)N(4),N(8),N(11)(1-carboxypropyl)cyclam)]Cl center dot H(2)O ((1-carboxypropyl) cyclam = 3-(1,4,8,11-tetraazacyclotetradecan-1-yl) propionic acid)), (I) are described. Chloride ligands do not undergo aquation reactions (at 25 degrees C, pH 3). The rate of nitric oxide (NO) dissociation (k(obs-NO)) upon reduction of I is 2.8 s(-1) at 25 +/- 1 degrees C (in 0.5 mol L(-1) HCl), which is close to the highest value found for related complexes. The uncoordinated carboxyl of I has a pK(a) of similar to 3.3, which is close to that of the carboxyl of the non coordinated (1-carboxypropyl) cyclam (pK(a) = 3.4). Two additional pK(a) values were found for I at similar to 8.0 and similar to 11.5. Upon electrochemical reduction or under irradiation with light (lambda(irr) = 350 or 520 nm; pH 7.4), I releases NO in aqueous solution. The cyclam ring N bound to the carboxypropyl group is not coordinated, resulting in a fac configuration that affects the properties and chemical reactivities of I, especially as NO donor, compared with analogous trans complexes. Among the computational models tested, the B3LYP/ECP28MDF, cc-pVDZ resulted in smaller errors for the geometry of I. The computational data helped clarify the experimental acid-base equilibria and indicated the most favourable site for the second deprotonation, which follows that of the carboxyl group. Furthermore, it showed that by changing the pH it is possible to modulate the electron density of I with deprotonation. The calculated NO bond length and the Ru/NO charge ratio indicated that the predominant canonical structure is [Ru(III)NO], but the Ru-NO bond angles and bond index (b.i.) values were less clear; the angles suggested that [Ru(II)NO(+)] could contribute to the electronic structure of I and b.i. values indicated a contribution from [Ru(IV)NO(-)]. Considering that some experimental data are consistent with a [Ru(II)NO(+)] description, while others are in agreement with [Ru(III)NO], the best description for I would be a linear combination of the three canonical forms, with a higher weight for [Ru(II)NO(+)] and [Ru(III)NO].